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Abstract

We test for the presence of market frictions that induce transitory deviations of observed
asset prices from the underlying efficient prices. Our test is based on the joint inference of
return covariances across multiple horizons. We demonstrate that a small set of horizons
suffices to identify a broad spectrum of frictions, both theoretically and practically. Our
method works for high- and low-frequency data under different asymptotic regimes. Ex-
tensive simulations show our method outperforms widely used state-of-the-art tests. Our
empirical studies indicate that intraday transaction prices from recent years can be consid-
ered effectively friction-free at significantly higher frequencies.

1 Introduction

The majority of studies within the field of financial economics are founded upon the well-
known proposition that capital markets exhibit efficiency (Fama, 1970, 1991). The Efficient
Market Hypothesis has various forms, and assessing the hypothesis is contingent on certain
equilibrium models that specify the expected stock returns. However, over short intervals,
such as daily or intraday periods, expected returns are negligible in efficient markets. In such
cases, market efficiency implies that the autocovariances of returns are close to zero. Thus,
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Alexei Onatski, Andrew Patton, Roberto Renò, Shuping Shi, Liangjun Su, Dacheng Xiu, and Jun Yu. We are es-
pecially grateful to Oliver Linton for illuminating discussions during the early stages of this paper. We thank the
participants from the China Meeting of the Econometric Society (July 2021) and the Fifteenth Annual SoFiE Con-
ference (Seoul, 2023) for their invaluable feedback. Additionally, we are grateful for the insights received from
scholars at The Chinese University of Hong Kong, University of Cambridge, University of Hong Kong, University
of Macau, Nanyang Technological University, National University of Singapore, and Singapore Management Uni-
versity. Li gratefully acknowledges the financial support from the Research Grants Council of Hong Kong (grant
number 24500923). Yunxiao Zhai provided excellent research assistance.

†Department of Economics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China. Email:
merrickli@cuhk.edu.hk.

‡Department of Economics, Rutgers University, 75 Hamilton Street, New Jersey Hall, New Brunswick, NJ 08901,
USA. Email: xiyeyang@economics.rutgers.edu.

1

mailto:merrickli@cuhk.edu.hk
mailto: xiyeyang@economics.rutgers.edu


efficiency can be assessed by analyzing the autocovariances of returns (Lehmann, 1990; Fama,
2014).

Therefore, nonzero return autocovariances at finer time scales indicates the presence of
market frictions, which induce temporary deviations of asset prices from their efficient or true
values (Hasbrouck, 2002). Such frictions can emerge from liquidity provision (Hasbrouck,
2007), behavioral fads (Lehmann, 1990), or herding in trading activity (Cipriani and Guarino,
2014). Detecting market frictions by examining return autocovariances appears straightfor-
ward. The absence of such frictions implies that autocovariances of returns should equal zero
across all horizons, i.e., Cov(Yi − Yi−k, Yi+k − Yi) = 0 for all k ≥ 1, where {Yi}i represents
a sequence of observed logarithmic prices. Thus, detecting a single horizon k with nonzero
autocovariances is sufficient to confirm the presence of market frictions. However, empirical
studies have documented nonzero covariances over various horizons (k values), suggesting
that examining returns over any single horizon may often be inadequate. Examining a wider
range of horizons seems essential. This is a common practice in empirical research studies.1

We propose a simple method to detect market frictions using autocovariances of returns
across multiple horizons. Our testing method is motivated by classic asset pricing literature,
which shows that various forms of market frictions lead to return reversals, and these rever-
sals are expected to produce negative autocovariances in returns over specific horizons. These
patterns have been empirically observed for decades as evidence against market efficiency,
supported by studies such as Roll (1984); Summers (1986); Fama and French (1988); Jegadeesh
(1990); Lehmann (1990); Fama (1991); Huang et al. (2010); Bogousslavsky (2016). However,
the existing literature falls short in addressing the selection of horizons and offers even less
discussion on the aggregation of information across various horizons.

We demonstrate that analyzing the covariance between Yi − Yi−k and Yi+k − Yi for a small
set of k values, such as k ∈ {1, 2, 3, 4}, is sufficient to detect a broad class of market frictions.
To capture the most significant return reversals within the selected small set of horizons, we
propose a minimum statistic that identifies the most negative autocovariances. The minimal
statistic effectively identifies inefficiencies driven by the complex behavior of the market fric-
tions, which can involve unknown serial dependencies, time-varying and stochastic patterns,
and endogeneity with respect to the efficient prices. Furthermore, we show that our testing
method can be applied to both intraday high-frequency data and interday low-frequency data,
each employing different asymptotic regimes. Such robustness greatly broadens the applica-
bility of our approach to diverse empirical scenarios.

Therefore, our method contributes to empirical asset pricing by offering a clear and ro-
bust solution to the enduring empirical challenge of return reversals or predictability observed
across different horizons. This variability may result in conflicting interpretations of market
efficiency when disparate horizons are employed. We demonstrate that analyzing and aggre-
gating information from a small set of horizons is sufficient, thus obviating the need for an
exhaustive exploration of return autocovariances across excessive horizons.

1For example, using monthly returns, Poterba and Summers (1988) examines return covariances over 96 hori-
zons.

2



We also contribute to the classic literature on testing for serial correlation. The primary
strength of our method is its ability to identify alternative directions with minimal tuning of
parameters, alongside its robustness in detecting weak market frictions—those that are asymp-
totically dominated by efficient returns. In simulations, the test performs well in finite samples.
We compare our tests against several widely used state-of-the-art tests, including modern up-
dates of the classic portmanteau test and various versions of variance ratio tests. Across a
comprehensive range of alternative models, our method outperforms all other tests in terms of
both power and size control.

Another major contribution is our provision of an effective tool for conducting economet-
ric inferences using intraday data, which has gained popularity over the past two decades.
Intraday transaction prices deviate from efficient prices due to various microstructural effects.
Econometric methods for intraday data differ significantly depending on the presence or ab-
sence of such microstructure frictions (Aı̈t-Sahalia and Jacod, 2014). Therefore, a statistical test
to evaluate the conformity of observed prices to the underlying efficient price is crucial for
selecting the proper analytical approach.2 While conventional practice subsamples intraday
returns at 5- to 15-minute intervals to reduce microstructure frictions, our analysis shows that
recent high-frequency data can be treated as effectively friction-free at much higher sampling
frequencies. This allows empirical studies to use finer-sampled transaction prices, yielding
larger datasets for more accurate estimation of fundamental quantities like volatility (Ander-
sen et al., 2003), market betas (Bollerslev et al., 2024), and other key financial metrics.3

Our paper also contributes to a burgeoning body of literature that examines the intricate
dynamics of asset prices that the standard jump-diffusion models cannot capture. Recent stud-
ies provide increasing evidence on temporary explosive drifts and gradual jumps that lead to
persistent returns (Christensen et al., 2022; Andersen et al., 2023). Related studies in this area
include Laurent et al. (2024); Shi and Phillips (2024), who employ return autocovariances to
measure ”realized drift.” Additionally, Kolokolov et al. (2025) develop block BUMVU the-
ory and propose a drift test emphasizing covariance across overlapping blocks. Chong and
Todorov (2025) employs short-lag autocovariances, applying them to volatility increments to
test for rough volatility.

The structure of the paper is as follows. Section 2 outlines the setup of the efficient prices
and market frictions. Section 3 introduces the testing method and discusses the asymptotic
properties of the testing statistics. Section 4 discusses several extensions of the setup and
the testing method. Section 5 presents extensive numerical studies that illustrate and com-
pare the finite sample performance of our method against other testing methods. Section 6
demonstrates the application of our method using empirical data. Section 7 concludes the pa-

2A graphic tool to examine the presences of deviations, or microstructure frictions in high frequency data is the
well-known volatility signature plot (Andersen et al., 2000). Aı̈t-Sahalia and Xiu (2019) proposed several formal tests
for the presence of i.i.d. deviations based on the Hausman principle (Hausman, 1978) in volatility estimation of the
efficient returns.

3For example, our empirical findings suggest that one can focus on intraday returns over intervals of 1 minute
or even shorter to estimate volatility. The advantage of utilizing these larger subsamples, in contrast to sampling
every 5 or 15 minutes, is the potential for negligible bias from weak microstructure frictions.
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per. The Appendix explains some technical details and provides additional theoretical results.
Supplementary materials Li and Yang (2025) include mathematical proofs for various technical
lemmas and additional simulation results. The code to implement the tests is available online.4

2 Model Setup

We consider a fixed time period [0, t], which could be a trading day or a year. Let Y n
i , i =

1, 2, . . . , nt be the observed logarithmic prices collected within the period [0, t], where nt is the
number of observations upon time t.

We will adopt a continuous-time framework for the underlying price processes. Let X de-
note the logarithmic efficient price process, modeled as a standard Brownian semimartingale,5

which can be expressed as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs. (1)

The drift b and volatility σ processes are locally bounded. We will denote the efficient price at
time i∆n as Xn

i := Xi∆n , where ∆n := t/nt is the spacing of observations. In the infill limit, as
nt → ∞ with t fixed, we have ∆n → 0.

Price inefficiencies are captured by temporary deviations from the efficient price, which
are modeled as latent pricing errors in the observed prices, reflecting various market frictions
that arise in the trading process. The pricing errors are commonly attributed to two main fac-
tors: (1) behavioral aspects, such as cognitive biases, heuristics, and other irrational behaviors
(Lehmann, 1990; De Long et al., 1990; Shiller, 2003), and (2) market frictions arising from el-
ements like inventory controls, bid-ask bounce, transaction costs, and other trading-related
impediments (Hasbrouck, 2004).

Let εni be the pricing error associated with the i-th transaction, defined as

εni := ∆θ
n · χi, θ ∈ [0, 3/4), (2)

where χ is a stationary ρ-mixing sequence with mean 0, variance γ2, independent of the effi-
cient price process X , and has an autocorrelation function (ACF) r(·) of unknown form. We
impose no restrictions on the ACF, except that the ρ-mixing coefficients decay at a polynomial
rate controlled by a parameter v > 0.6 The ACF can exhibit an arbitrarily slow decay rate.
Thus, it can capture the gradually diminishing deviations from efficient prices as modeled

4R, Matlab, and Python packages can be found at https://github.com/merrickli/minimac.
5Jumps will be discussed in Section 4.
6Specifically, we can define two discrete filtrations Gp := σ{χj : p ≥ j}, Gq := σ{χj : q ≤ j}. For any positive

integer j, we assume the mixing coefficients satisfy ρj ≤ Cj−v for some C > 0, v > 0, where the coefficients are
defined by

ρj := sup
{
|E(VhVj+h)| : E(Vj) = E(Vj+h) = 0,Var(Vh) ≤ 1,Var(Vj+h) ≤ 1, Vh ∈ Gh, Vj+h ∈ Gj+h

}
.
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by Summers (1986); Poterba and Summers (1988). In the presence of pricing errors, the i-th
observed price is the sum of two latent components: Y n

i = Xn
i + εni .

Note that in (2), we introduce a factor ∆θ
n to control the relative scale of pricing errors

compared to the efficient returns, which are of order
√
∆n. Given that we assume ∆n → 0

as the sample size increases, the errors are asymptotically dominating (or dominated by) the
efficient returns when θ ∈ [0, 1/2) (or θ ∈ (1/2, 3/4), respectively). In this paper, we adopt the
following classification:

Definition 2.1 (Weak and strong pricing errors). Pricing errors defined in (2) are considered weak
when θ > 1

2 and strong when θ ≤ 1
2 .

The econometrics literature (Aı̈t-Sahalia and Jacod, 2014) on intraday data often sets θ = 0,
reflecting the rationale that microstructural effects, such as bid-ask bounces, dominate ultra-
high-frequency returns. Conversely, when θ = 1/2, the errors and efficient returns share the
same asymptotic scale. In this scenario, we can rescale the prices using

√
∆n. The rescaled

prices and the errors resemble the permanent-transitory decompositions frequently used in low-
frequency settings in asset pricing and macroeconomics. We establish that our statistics re-
main invariant under this rescaling, allowing their application to both high-frequency and
low-frequency data. Further details can be found in Section 3.4.

Our testing device is capable of detecting weak errors for θ values up to 3
4 . This feature sets

our approach apart from many existing tests, such as the portmanteau test (Escanciano and
Lobato, 2009), the variance ratio tests (Lo and MacKinlay, 1988) in low-frequency settings and
the volatility methods applied in high-frequency frameworks (Andersen et al., 2000; Bandi and
Russell, 2008; Aı̈t-Sahalia and Xiu, 2019), where weak errors asymptotically vanish in variances
or squared terms. Instead, we utilize a covariance approach in our method, and we illustrate
that this approach remains effective for identifying weak pricing errors.7 The broader range
of detectable errors in theory is corroborated by our simulation experiments, where our tests
prove more effective at identifying weak errors in finite samples.

Although strong and weak errors are largely indicative of asymptotic conditions, empirical
scenarios often display pricing errors with varying magnitudes, rendering the concepts prac-
tically relevant. For example, subsampling is frequently used with high-frequency intraday
data. In these coarser samples, the transitory deviations reflecting microstructural errors tend
to diminish compared to efficient returns, illustrating a case of weak errors.

3 The Test Statistics and Large Sample Properties

In the absence of market frictions, the observed prices align with efficient prices, indicating no
deviations whatsoever. Consequently, the variance of pricing error ε will equal zero. Mathe-

7Recent literature in high-frequency econometrics has revived the covariance approach for various applications,
such as estimating microstructure noise (Li and Linton, 2022) and measuring integrated drift (Laurent et al., 2024;
Shi and Phillips, 2024; Andersen et al., 2023).
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matically, this hypothesis can be expressed as:

H0 : γ
2 = 0.

Under the alternative hypothesis, the observed prices swing away from the efficient prices.
This is represented as:

H1 : γ
2 > 0.

This section presents the design of our test statistics aimed at distinguishing between the
aforementioned hypotheses. Our testing method is inspired by classic asset pricing literature,
which examines return autocovariances or autocorrelations to assess market efficiency. Given
our emphasis on finer time scales—such as weekly, daily, and even intraday periods—expected
returns remain nearly constant and, in fact, close to zero. Consequently, under the hypothesis
of frictionless markets, observed returns show zero correlations across all horizons. However,
the presence of pricing errors in asset prices induces negative autocorrelations in returns. This
is particularly evident when the pricing errors are independently and identically distributed
(i.i.d.). To see this, we note that the first-order autocovariance of the observed returns is given
by8

Cov
(
Y n
i+1 − Y n

i , Y n
i − Y n

i−1

)
≈ Cov

(
εni+1 − εni , ε

n
i − εni−1

)
= −Var(εni ).

However, if the errors display strong persistence, negative autocovariances become more
pronounced only over longer horizons as noted by Summers (1986) and Fama and French
(1988). Recent studies (Chordia et al., 2005; Huang et al., 2010) also confirm that return rever-
sals occur across various horizons. With this in mind, we will develop a multi-horizon testing
approach in this section. This new method provides an effective tool for selecting return hori-
zons, over which it examines return reversals to identify a broad spectrum of pricing errors.
Surprisingly, the range of horizons to consider is quite small.

3.1 The testing statistics over a single horizon

We will analyze returns across different horizons. To begin, let’s focus on a single horizon
indexed by a positive integer k. Given a series of observed prices {Y n

i }nt
i=1, we define the

following statistics

F (Y ; k)nt :=
1

2k

nt−k∑
i=k+1

f(Y ; k)ni ,

8The first approximation follows from the martingale difference property of the efficient returns, and the fact
that the expected returns—reflected in the drift terms—are negligible at finer time scales.
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where f(Y ; k)ni := (Y n
i − Y n

i−k)(Y
n
i+k − Y n

i ).9 The following theorem establish the limiting
distribution under the H0.10

Theorem 3.1. We have the following limiting distribution under H0 for a given horizon k:

F (Y ; k)nt√
∆n

Ls−→ Zt,

where Zt is a (conditional) Gaussian variable centered at 0, with conditional covariance given by
Φk

∫ t
0 σ

4
sds, where Φk := 1

6

(
k + 1

2k

)
.

Let Q(Y )nt :=
∑nt−1

i=2 (f(Y ; 1)ni )
2, we introduce the standardized testing statistic11

H(Y ; k)nt :=
F (Y ; k)nt√
Φk Q(Y )nt

. (3)

Theorem 3.1 readily implies the following convergence result , which further gives the size of
the single horizon statistic:

Corollary 3.1. For any t > 0, we have the following limiting distribution:

H(Y ; k)nt
Ls−→ N (0, 1) . (4)

Let zα be the α-quantile of the standard normal distribution. The statistic H(Y ; k)nt has asymptotic size
α under H0:

P(H(Y ; k)nt < zα |H0) → α.

3.2 The rationale behind power: return horizons and reversals

In the presence of pricing errors, it is expected that the covariances of returns will deviate
from zero at specific lags or horizons. A natural approach to investigating such deviations
involves comparing the squared autocovariances of returns across different lags or horizons.
The comparison of squared autocovariances at individual lags aligns with the framework of
portmanteau tests for zero autocorrelations (Box and Pierce, 1970; Ljung and Box, 1978; Escan-
ciano and Lobato, 2009). On the other hand, examining autocovariances over broader horizons

9The division by 2k is for ease of calculation. Following the analysis in Lo and MacKinlay (1988), we can
construct a sequence of non-overlapping statistics indexed by the starting observation index qk = 1, . . . , 2k:
F (Y ; k, qk)

n
t :=

∑n(qk)t
j=1 f(Y ; k)nqk+(2j−1)k, where n(qk)t := ⌊(nt − qk)/(2k)⌋ and ⌊·⌋ is the floor function. The

statistic F (Y ; k, qk)
n
t is based on non-overlapping intervals, which simplifies the analysis using standard results

on martingale differences. Consequently, our overlapping statistic F (Y ; k)nt becomes the average of the 2k non-
overlapping statistics. That is, F (Y ; k)nt = 1

2k

∑2k
qk=1 F (Y ; k, qk)

n
t .

10The notation Ls−→ denotes stable convergence in law, which is a slightly stronger notion than convergence in law.
We require this stronger convergence here since the limiting variance process is stochastic. Stable convergence of
the empirical process is preserved when it is normalized by a consistent estimator of the limiting variance. Such
convergence is not guaranteed by standard convergence in law.

11Note that H(Y ; k)nt can also be rewritten as H(Y ; k)nt =
F (Y ;k)nt√

∆nΦk Q̃(Y )nt

, where Q̃(Y )nt := Q(Y )nt /∆n is a

consistent estimator of the asymptotic variance in Theorem 3.1.
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is consistent with the variance ratio tests for martingale difference sequences (Lo and MacKin-
lay, 1988; Cochrane, 1988; Deo and Richardson, 2003). These tests are inherently two-sided. We
now show that a more powerful one-sided test can be conducted to detect pricing errors.

The economic intuition of the directional test is straightforward: pricing errors, as transitory
components of observed prices, exert only temporary effects on asset prices. Consequently,
returns will eventually revert. Thus, the statistic F (Y ; k)nt , after some normalization, should
converge to a probability limit that is negative for some k. We will show that the ACF of the
pricing error process plays a crucial role in determining the ”speed” of this reversion.

Let’s revisit the special ACF where pricing errors follow an i.i.d. process. Then, we imme-
diately observe Cov

(
Y n
i − Y n

i−k, Y
n
i+k − Y n

i

)
= Cov

(
εni − εni−k, ε

n
i+k − εni

)
, as efficient returns

are uncorrelated. The i.i.d. property of the pricing errors further simplifies the covariance to
−Var(εni ). Thus, the covariance of returns over any k horizon is the negative of the pricing
errors’ variance. That is, return reversals occur at any horizon.

For a general ACF r(·), the covariance of the pricing error differences reduces to

Cov
(
εni − εni−k, ε

n
i+k − εni

)
= −Var(εni ) · g(k, r), where g(k, r) := r0 − 2rk + r2k. (5)

Return reversals will be observed if g(k, r) > 0. The following theorem addresses the joint
conditions on k and r that ensure a positive g(k, r) value. Surprisingly, for a broad range of
pricing errors (characterized by their ACFs r(·)), return reversals will emerge over a small set
of horizons.

Theorem 3.2. Let R(ℓ) := {r(·) : r1 ≤ 1 − 2−ℓ} for some nonnegative integer ℓ. Then for any
r(·) ∈ R(ℓ), there exists some k ∈ Kℓ := {1, . . . , 2ℓ} such that g(k, r) > 0.

According to this theorem, return reversals (with k = 1) are immediately detected if r1 ≤ 0,
and the i.i.d. case emerges as a specific example. If r1 is allowed to be positive up to 0.5,
checking returns over an additional horizon with k = 2 suffices. Extending the range for
r1 up to 0.75 requires checking returns over two more horizons with k = 3, 4; this class of
ACFs encompasses most parametric models in empirical studies. Even considering extremely
slowly decaying pricing errors as discussed in Summers (1986); Poterba and Summers (1988),
Theorem 3.2 shows it is unnecessary to examine beyond a wide range of horizons. Checking
for k ∈ {1, 2, . . . , 8} is sufficient to detect pricing errors with r1 nearly 0.9!

Theorem 3.2 implies that considering a small set of horizons suffices under weak condi-
tions. We now provide further elaboration on this theorem. We rewrite g(k, r) = 2

(
r0+r2k

2 − rk
)
.

From this expression, it becomes clear that g(k, r) ≤ 0 if the ACF maintains concavity. However,
being bounded between -1 and 1, the concavity of the ACF cannot be sustained indefinitely be-
cause it will eventually intersect with the lower bound. The left panel of Figure 1 illustrates
this phenomenon by plotting four different ACFs with different values of r1, from which we
observe that the concavity of the ACF will be violated after a few lags when it cuts the lower
bound. The figure also demonstrates that a smaller r1 (black dots in the left figure) diminishes
the interval over which concavity–and thus negativity in g(k, r)–is maintained. This implies
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Figure 1: Graphic illustration of Theorem 3.2: ACF plots (left) and the g(·) function plots (right). The ACFs and
their g(·) functions are matched by the line styles.

that as r1 decreases, the interval for identifying a k such that g(k, r) > 0 becomes narrower,
which aligns with the predictions of Theorem 3.2. Indeed, the right panel of Figure 1 shows
that g(k, r) is more likely to be positive when r1 decreases. Moreover, given ACFs range in
(−1, 1), we have g ∈ (−2, 4). This asymmetry also suggests greater potential power for left-
sided tests (positive g) compared to right-sided tests (negative g).

The upcoming theorem demonstrates the consistency of our testing statistics H(Y ; k)nt that
relies on having a positive g value.

Theorem 3.3. Suppose r(·) ∈ R(ℓ) and k ∈ Kℓ as stated in Theorem 3.2. Then, H(Y ; k)nt is consistent
under H1:

P(H(Y ; k)nt < zα |H1) → 1.

Theorem 3.3 provides a theoretical basis for the consistency of the test statistics H(Y ; k)nt

under the alternative hypothesis. However, implementing the test requires an explicit choice of
the horizon k from a finite set, as per Theorem 3.2. Furthermore, one might consider selecting k

from a larger set, since Theorem 3.2 suggests that the set of ACFs that can be detected expands
as ℓ increases. We first provide a formal analysis that a large k is not favored.

We define the a function g for a horizon k and an ACF r(·): g(k; r) :=
−g(k,r)√
k3+k/2

. The function

g captures all aspects related to k in the limit of H(Y ; k)nt under H1, as one can observe from
the definition of the testing statistic H(Y ; k)nt in (3). Intuitively, a more negative g(k; r) will
yield higher power for our left-sided test. On one hand, Theorem 3.2 ensures the existence of
k within a small set such that −4 < −g(k, r) < 0 for a broad range of ACFs. On the other
hand, the denominator of g increases at a rate of k3/2. Therefore, g will reach its minimum
(negative) value at a small k for most ACFs. This explains the preferred choice of a small set of
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k’s in practice, such as k ∈ {1, 2, 3, 4}. Further simulation evidence, provided in Section 5, will
justify the effectiveness of using such a small set of k’s.

Given the small set of horizons under consideration, finding the optimal one to boost
power seems appealing. However, achieving this optimality requires additional parametric
assumptions about the ACF and precise estimates of the underlying ACFs, which are often
unavailable in practice.

We advocate an approach based on testing statistics over multiple horizons. This approach
not only alleviates the burden of identifying a single optimal k, but also allows us to explore
additional information from various time horizons. As shown in the simulation study, the mul-
tiple horizon method is simple to implement and offers robust power against diverse pricing
errors.

3.3 The multi-horizon test

In this subsection, we will demonstrate the multi-horizon testing approach. Let k, k′ be two
positive integers that represent two horizons. We need the following quantities to describe the
result (where 1{·} is the indicator function):

Φk,k′ := k3 − 1

3

[
(2k − k′)3 − (2k − k′)

]
1{k′≤2k}, Φk,k′ :=

Φk,k′

4kk′
, ρk,k′ :=

Φk,k′√
ΦkΦk′

.

Note that when k = k′, Φk,k′ reduces to Φk that is defined in Theorem 3.1.

Theorem 3.4. Let k1, . . . , km be a set of positive integers. We have the following joint limiting distri-
bution under H0: (

F (Y ; k1)
n
t√

∆n
, . . . ,

F (Y ; km)nt√
∆n

)
Ls−→

(
Z1
t , . . . ,Zm

t

)
,

where the limting variables
(
Z1
t , . . . ,Zm

t

)
are (conditionally) joint Gaussian with mean zero and con-

ditional covariances Φkj ,kj′

∫ t
0 σ

4
sds for 1 ≤ j ≤ j′ ≤ m.

Remark 3.1. It is important to note that while the limiting distribution presented in Theorem 3.1 is
not surprising, the joint distribution derived in Theorem 3.4 is, to the best of our knowledge, new to the
literature. This is particularly true for the non-trivial correlations Φkj ,kj′ .

Corollary 3.2. We have

(H(Y ; k1)
n
t , . . . ,H(Y ; km)nt )

Ls−→ (Θ1, . . . ,Θm),

where (Θ1, . . . ,Θm) are standard normal variables with correlation corr
(
Θj ,Θj′

)
= ρkj ,kj′ for 1 ≤

j, j′ ≤ m.

We propose a minimum statistic to effectively capture return reversals, which serves as
evidence of pricing errors. Let K = (k1, k2, . . . , km) be an m-tuple of positive integers. We
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define ΣK as the law of a multivariate normal distribution with mean zero and a covariance
matrix given by ρki,kj , 1 ≤ i, j ≤ m, as defined in Corollary 3.2. The minimum statistic is
defined as

H(Y ;K)nt := min
ki∈K

H(Y ; ki)
n
t . (6)

Note that when K = {k} is a singleton, the statistic H(Y ;K)nt is consistent with H(Y ; k)nt

introduced in (3).
Based on Theorem 3.4 and Corollary 3.2, we can derive the limiting distribution of the min-

imum statistic for any arbitrary K under the null hypothesis. In contrast, under the alternative
hypothesis, we can identify return reversals over a small set of horizons, as predicted by Theo-
rem 3.2. Consequently, the minimum statistic will converge to the left tail when pricing errors
are present. Recall Kℓ := {1, 2, . . . , 2ℓ} in Theorem 3.2.

Theorem 3.5. Given α ∈ (0, 1), let cα be the critical value that satisfies ΣKℓ
(x1 ≥ cα, . . . , xm ≥

cα) = 1− α. The statistic H(Y ;Kℓ)
n
t has asymptotic size α under H0:

P(H(Y ;Kℓ)
n
t < cα |H0) → α.

When r1 ≤ 1− 2−ℓ, H(Y ;Kℓ)
n
t is consistent under H1:

P(H(Y ;Kℓ)
n
t < cα |H1) → 1.

Theorem 3.5 states that it is adequate to examine a small number of horizons to detect
pricing errors with a wide range of ACFs. Moreover, we can pinpoint the exact horizons to
ensure an effective test of targeted alternatives. For instance, if the ACF of the pricing error at
lag 1 is believed to be mildly positive and bounded by 0.5, checking two horizons, k ∈ {1, 2},
is sufficient.

Therefore, our approach is nearly independent of tuning parameter selection. This freedom
differs from data-driven methods like the automatic portmanteau test (Escanciano and Lobato,
2009) or the automatic variance ratio test (Choi, 1999). We choose a small set of horizons,
serving as our tuning parameters, that perform universally across a broad range of alternative
hypotheses. This feature contributes to the robustness and accuracy of our testing method, as
demonstrated in the simulation study in Section 5.

3.4 Beyond the infill framework: The scenario θ = 1
2

Up to this point, discussions have assumed an infill setting, which implies that as the sam-
ple size tends to infinity, the time spacing between observations, ∆n, approaches zero in the
limit. This might suggest our test method is restricted to intraday high-frequency data, where
efficient returns of order

√
∆n disappear in the limit. We will now show that our method is

applicable beyond this context.
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The flexibility of our method arises from the adaptable modelling of the pricing errors
through the parameter θ. Recall that the deviation of the i-th transaction price from the under-
lying efficient price is εni = ∆θ

n·χi, with θ ∈ [0, 3/4). The high-frequency econometrics literature
(Aı̈t-Sahalia and Jacod, 2014) typically emphasizes strong deviations, i.e., θ ∈ [0, 1/2). We now
explore the implications when θ = 1/2.

When θ = 1
2 , the pricing errors and the efficient returns have the same asymptotic orders.

Denote the scaled prices by Ṽi := V n
i /

√
∆n, V = X or Y. Then the additive model Y n

i = Xn
i +εni

can be expressed as:

Ỹi = X̃i + χi, (7)

where X̃ is a random walk with time-varying drift and volatility. This formulation connects the
classic permanent-transitory decomposition commonly used in macroeconomics and asset pricing
literature. In this model, the permanent component follows a random walk, while the transi-
tory component behaves as a stationary process, typically modelled as an i.i.d. or AR(1) pro-
cess.12 Thus, the model in (7) can be seen as the counterpart in a long-span, fixed-frequency
setting, where the efficient returns and deviations are of the same order, with neither vanishing
as the sample size grows.13

A key observation is the rescaling-invariance property for our test statistics: H(V ;K)nt =

H(Ṽ ;K)nt for V = X or Y . This property leads to the robustness to the asymptotic regimes
and data frequencies, and it guarantees the validity and effectiveness of our test across a wide
range of data settings, whether applied to intraday noisy high-frequency data with increas-
ingly dominant errors (θ < 1/2) or to lower-frequency data, such as daily returns, where the
pricing errors do not necessarily dominate as the sample size grows (θ ≥ 1/2). The follow-
ing corollary follows directly from this invariance property and Theorem 3.5. The assumed
data generating process accommodates a broad class of permanent–transitory decomposition
models commonly used in the low-frequency time series literature.

Corollary 3.3. Suppose that Yi = Xi+εi, where {εi}ni=1 is a stationary mixing sequence with variance
γ2 and ACF satisfying r1 ≤ 1− 1

2ℓ
for some positive integer ℓ. The efficient price process X evolves as

Xi = Xi−1 + ei, where {ei}ni=1 is a sequence of i.i.d. innovations independent of {εi}i.
Let α ∈ (0, 1), and define cα and ΣKℓ

as in Theorem 3.5. Then, under the null hypothesis H0, the
test statistic H(Y ;Kℓ)

n
t has asymptotic size α as n → ∞: P(H(Y ;Kℓ)

n
t < cα | H0) → α. Moreover

H(Y ;Kℓ)
n
t is consistent under the alternative hypothesis H1: P(H(Y ;Kℓ)

n
t < cα | H1) → 1.

12This structure is well-documented in studies such as Summers (1986); Cochrane (1988); Fama and French
(1988); Hasbrouck (1993); Cochrane (1994); Corwin and Schultz (2012); Hendershott and Menkveld (2014).

13While ∆n approaches zero, it functions merely as a scalar and does not have any substantial impact beyond
this role.
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4 Extensions

In this section, we discuss various extensions of our framework. These extensions are both the-
oretically and empirically relevant, and they demonstrate the versatility of our testing method.
The technical details and regularity conditions for these extensions are provided in Appendix
A. The asymptotic properties of our testing method under these extensions are given in Ap-
pendix B, which encompasses the results from Section 3 as special cases.

4.1 Stochastic observation scheme

Our assumption that observed prices are equally spaced by ∆n holds for interday prices, such
as daily or weekly data, as well as for high-frequency data collected at regular intervals. How-
ever, this scheme may not adequately represent all intraday prices, where transaction times
are often irregular and stochastic. We now broaden the regular observation scheme to accom-
modate a general stochastic scheme, as established in Jacod et al. (2017, 2019); Li and Linton
(2022).

The randomness of the observation scheme is governed by a positive stochastic process α,
which serves as the observation density process controlling the random observation spacing
relative to the regular spacing ∆n. In simple terms, around time s, observations occur more
frequently than the regular scheme when αs > 1, and less frequently when αs < 1.

The random observation times {Tn
i }i, random spacings {∆(n, i)}i, and observation densi-

ties {αTn
i
}i are related as follows: Assume Tn

0 = 0. For any i ≥ 1, the random observation
duration is approximately ∆(n, i) ≈ ∆n/αTn

i−1
. Hence, the observation times are determined

by Tn
i =

∑
j≤i∆(n, j). The total number of observations by time t is given by nt =

∑
i 1{Tn

i ≤t}.
We define a cumulative observation density process

At :=

∫ t

0
αsds,

which will be used to describe the limiting processes under this random observation scheme.
The detailed regularity conditions on α is presented in Appendix A.2.

4.2 Jumps

We can accommodate jumps in the efficient price process by imposing mild conditions to re-
strict jump activities. Employing the truncation method (Mancini, 2001; Li et al., 2013), we
eliminate jumps by carefully setting a threshold value that depends on the moments of ob-
served returns. In the absence of pricing errors, if the absolute efficient returns exceed this
threshold, they are identified as jumps in the price level and are removed. As a consequence,
the limiting distribution of our testing statistics will not be changed.14 With the alternative hy-

14This paper’s motivation differs from that of estimating volatility-related parameters, where jumps create bias.
In our case, including the jump component in our statistic does not introduce any nonzero bias under the null
hypothesis, nor does it cause size distortion. However, it does increase the asymptotic variance. Therefore, we
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pothesis, the threshold is relatively larger than the pricing errors, allowing them to be retained.
Consequently, consistency is also maintained. For the details of the jumps and the truncation
method, one is referred to Appendix A.3.

4.3 Stochastic scales in pricing errors

The pricing error process is assumed to be stationary. We can also follow Jacod et al. (2017) to
allow the pricing error process to exhibit stochastic variances, capturing time-varying scales in
pricing errors. Instead of fixing the variance of the χ process at γ2, we introduce a nonnegative
process γ, so the i-th pricing error is defined as:

εni = ∆θ
n · γTn

i
· χi.

For identification purposes, we normalize the variance of χ to be 1.
The integrated variance of the pricing errors on [0, t] is given by

∫ t
0 γ

2
sdAs. Now the null

hypothesis posits that
∫ t
0 γ

2
sdAs = 0 almost surely, while the alternative hypothesis asserts that∫ t

0 γ
2
sdAs > 0 with positive probability.

4.4 Endogenous pricing errors

A common assumption in the literature is that pricing errors and efficient returns are indepen-
dent. However, this assumption may not hold in practice and in many leading microstructure
models. In the previous subsection, we introduced the random scale process γ to capture
time-varying scales in pricing errors. In principle, the γ process can be endogenously deter-
mined by the efficient returns; for example, it could be a function of the volatility process of
the efficient price. However, we still assume that the stationary pricing error component, χ,
is independent of the efficient returns. Thus, while efficient returns and pricing errors may
display higher-order dependence via γ, they remain uncorrelated.

We demonstrate that our testing statistics remain valid in a broad setting for endogenous
pricing errors that are correlated with the efficient returns. The key element of our testing
statistics can be rewritten as:

f(Y ; k)ni = f(X; k)ni + f(ε; k)ni + (Xn
i −Xn

i−k)(ε
n
i+k − εni ) + (Xn

i+k −Xn
i )(ε

n
i − εni−k). (8)

Assuming a constant γ, under the alternative hypothesis, we expect E(f(X; k)ni ) ≈ 0 due to
the martingale property of X , and E(f(ε; k)ni ) < 0 for some k, as shown by Theorem 3.2. Thus,
if the covariance between efficient returns and pricing errors at displacements is not overly
positive, such that:

Cov
(
Xn

i −Xn
i−k, ε

n
i+k − εni

)
+Cov

(
Xn

i+k −Xn
i , ε

n
i − εni−k

)
< −Cov

(
εni − εni−k, ε

n
i+k − εni

)
,

employ the truncation method to deal with intraday data, as it reduces variance and enhance the statistical power
of our tests.

14



our test statistics can still detect pricing errors. According to Theorem 3.2, this condition holds
for some k if pricing errors have a large variance, e.g., large γ or asymptotically θ < 1/2.
The empirical implication is that for large pricing errors, cross-covariances will not negate the
power of our test statistics.

However, with moderate or small pricing errors, positive cross-covariances between effi-
cient returns and pricing error differences may offset the negative covariances between εni −
εni−k and εni+k − εni . Positive cross-covariances are suggested by many leading microstruc-
ture models, such as those by Kyle (1985) and Easley and O’hara (1992). These reflect market
makers’ learning effects on market dynamics, see Diebold and Strasser (2013); Andersen et al.
(2022) for a detailed discussion. If these positive cross-covariances are strong, our left-sided
test statistics may fail to detect pricing errors. In such cases, we recommend using two-sided
test statistics discussed below.15

4.5 Right-sided tests, two-sided tests, and other alternative hypotheses

In this paper, we concentrate on returns over short periods, such as daily or intraday inter-
vals, where the expected returns—represented by the drift term in model (1)—are nearly zero.
Consequently, deviations of transaction prices from efficient price lead to return reversals. Our
left-sided test statistics are specifically designed to effectively identify these reversals, thereby
uncovering deviations and market inefficiencies.

However, recent literature on intraday prices, such as Christensen et al. (2022); Andersen
et al. (2023), documents the presence of strong drift or gradual jump terms that lead to locally
persistent returns, which invariably introduces short-term inefficiencies. Although such phe-
nomena are less common compared to the temporary deviations examined in this paper, they
can still be detected using our test statistics. In fact, it can be shown that our test statistics
will exhibit strong positive values, allowing a right-sided test to effectively identify these de-
viations from the efficient price. Section 6 offers an empirical illustration of this application in
recognizing extreme drift terms.

For those primarily interested in detecting deviations from efficient prices—regardless of
their causes—a two-sided test is appealing. It is effective against a broader spectrum of alterna-
tives. Specifically, for a given set of horizons K and a significance level α, we can numerically
calculate a pair of critical values L∗

K,α and U∗
K,α that satisfies:

P
(
H(Y,K)nt ∈ [L∗

K,α, U
∗
K,α]

c|H0

)
→ α.

Moreover, we can find the pair of critical values L∗
K,α and U∗

K,α such that the associated confi-
dence intervals have the minimal length.16

In the supplementary materials Li and Yang (2025), particularly Section S.1.2, we present

15Additional simulation studies in the presence of endogenous pricing errors are presented in Appendix S.1 of
the supplementary materials Li and Yang (2025).

16Note that the distribution of our test statistics under the null hypothesis is not symmetric. Therefore, the
confidence intervals are not symmetric under the null hypothesis.
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simulation evidence that confirms the robustness of our test statistics across a wider array of
alternative models. This includes fractional Brownian motion with diverse Hurst parameters,
ARMA processes with varying coefficients, and drift burst processes characterized by different
degrees of local explosiveness.

5 Simulation Studies

In this section, we conduct numerical studies to evaluate the finite-sample performance of our
test statistics and examine different models of pricing errors under the alternative hypotheses.
We will compare our method with several other popular methods in the literature.

5.1 Other competing tests

Under the null hypothesis, returns will be uncorrelated at the finer time scales considered
in this paper. Therefore, the classical portmanteau tests developed by Box and Pierce (1970);
Ljung and Box (1978) can, in principle, serve as a benchmark for evaluating the performance of
our tests in finite samples. These portmanteau tests rely on the (weighted) sum of the squared
sample ACFs at lags less than or equal to a positive integer p. Under the null hypothesis, the
statistic will following a χ2

p distribution. Recent studies, such as Escanciano and Lobato (2009),
have developed data-driven methods to select p, which are found robust and more powerful
than other tests in practice.

The variance-ratio test (Lo and MacKinlay, 1988; Poterba and Summers, 1988) is a popular
approach in the finance and macroeconomics literature. It compares the variance of increments
of a series aggregated over multiple periods to the variance of single-period increments. Thus,
such test requires an explicit choice of multiple periods or horizons. Various versions of the
test have been proposed in the literature. For instance, Choi (1999) introduced an automatic
variance ratio test where the optimal value of horizons K is determined through a completely
data-dependent procedure. Chow and Denning (1993) proposed testing multiple holding pe-
riods simultaneously.

Within the high-frequency econometrics literature, Aı̈t-Sahalia and Xiu (2019) proposed to
test for the presence of i.i.d. pricing errors based on the Hausman principle (Hausman, 1978)
in volatility estimation. The tests are based on the well-known result that realized volatility
estimators are consistent and efficient in the absence of pricing errors. However, these esti-
mators become inconsistent when pricing errors are present. In contrast, the quasi-maximum
likelihood estimator remains consistent regardless of the presence or absence of errors.

Compared to the aforementioned methods, our approach offers several advantages. First,
although our method is essentially nonparametric, it largely avoids the common tuning pa-
rameter selection issues—specifically, the returns horizons—faced by nonparametric techniques.
Indeed, we demonstrate that in most practical applications, focusing on a small set of hori-
zons, such as {1, 2, 3, 4}, is often sufficient. This leads to significant robustness in testing a
broad range of alternatives, as we will illustrate in the subsequent subsections. Secondly, our
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method can handle weak errors—errors that are asymptotically dominated by the efficient re-
turns.17 The manifestation of this theoretical advantage is that our tests exhibit exceptional
sensitivity and power in detecting small-scale errors in practice. A third advantage is that our
test naturally connects to market liquidity measurement, providing an economically intuitive
interpretation. Additionally, our testing methods offer other benefits, such as robustness to
random sampling, endogeneity and serial dependence in pricing errors, as well as computa-
tional efficiency—an important advantage for handling large datasets.

We will conduct ”horseraces” of our tests against these established methods discussed
above: the automatic portmanteau test (AutoQ) proposed by Escanciano and Lobato (2009);
variance ratio tests with different horizon choices (VRq, q = 2, 4, 10); the automatic variance
ratio test (AutoVR) studied by Choi (1999); the multiple periods version of the variance ra-
tio test developed by Chow and Denning (1993) (CD); and the three tests recommended by
Aı̈t-Sahalia and Xiu (2019) (H3n, Tn, ACn).

5.2 Model specifications and numerical settings

The efficient price process is specified by the following stochastic differential equations:

dXt = µdt+ σtdWt + ξXt dJt, dσ2
t = κ(ϑ− σ2

t )dt+ ησtdBt + ξσt dJt,

where W and B are two standard Brownian motions with correlation ρ, and Jt is a Poisson
process with intensity λ. The log-price jump size ξXt follows a double exponential distribution,
with probability P of being negative. The means of positive and negative jump sizes are µX

+

and −µX
− , respectively. The volatility jump size ξσt follows an exponential distribution with

mean µσ.
We set the time of unit to be one year and consider a time horizon of one trading day,

represented by the interval [0, T ] with T = 1/252. The model parameters are given as follows:

µ = 0.05, κ = 5, ϑ = 0.04, η = 0.05, ρ = −0.8,

P = 0.65, µσ = 0.003, µX
+ = 0.0075, µX

− = 3µX
+/2, λ = [1/T ].

We use n = 23, 400, which corresponds to the number of seconds in a typical trading day.18 We

17Aı̈t-Sahalia and Xiu (2019) show that under the simple i.i.d. setting with θ = 3/4, their testing statistics follow
a noncentral Chi-squared distribution with various noncentrality parameters, see their Corollaries 1, 2, 3 and 4. But
those results do not yield consistency. The proofs on p.197 reveals that:

∆−1
n

n∑
i=1

(∆n
i X)4 = Op(1), ∆−1

n

n∑
i=1

a4
n(Ui − Ui−1)

4 = Op(∆
4θ−2
n );

∆−1
n

n∑
i=1

an(∆
n
i X)3(Ui − Ui−1) = Op(∆

θ
n), ∆−1

n

n∑
i=1

a3
n(∆

n
i X)(Ui − Ui−1)

3 = Op(∆
3θ−1
n ).

Attaining consistency is possible if ∆−1
n

∑n
i=1 a

4
n(Ui − Ui−1)

4 supersedes the other three terms, thereby requires
θ < 1/2.

18In this numerical study, we focus on a single data frequency. While other frequencies could be explored,
changing the frequency affects the noise-to-signal ratio (NSR), raising it when θ < 1/2 and lowering it when
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consider a model where the observation times Tn
i at stage n follow an inhomogeneous Poisson

process with rate nαt, where αt = 1 + 1
2Θt, and Θt = cos(2π × 252 × mod(t, 1

252)), a function
that models a trading indicator that peaks at the beginning and end of each trading day, with
a trough midday, and repeats daily.

Under H1, the pricing error scale process γ satisfies

γt = Kγγ
′
t, dγ′t = −ργ(γ

′
t − µt)dt+ σγdWt.

We set the parameters as follows: ργ = 10, µt = 1+0.1Θt, and σγ = 0.1. After simulating the se-
ries {γ′Tn

i
}i, we normalize it by dividing each element by the sample mean. This normalization

ensures that the magnitude of the γ process is controlled by the parameter Kγ .19

For the stationary part of the pricing errors χ, we consider the class of ARMA processes.
The error associated with the i-th trade is given by

χi = ei +

p∑
j=1

ϱjχi−j +

q∑
j=1

ϑjei−j .

We consider the pairs of (p, q) ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 1)} that correspond to i.i.d.,
AR(1), MA(1), AR(2), MA(2), and ARMA(1,1) pricing errors. The innovations {ei}i follow a
Student’s t-distribution with 5 degrees of freedom. The {χi}i process is normalized to have
unit variance. We analyze a total of 10 unique model specifications under H1. This set includes
the 6 ARMA structures mentioned earlier, with some models employing multiple parameteri-
zations to reflect various autocorrelation patterns of pricing errors found in empirical data.

5.3 Evaluating the size and power

Table 1 presents the rejection probabilities under the null hypothesis (H0) for our test statistics
and various other tests. Overall, our statistics, the three variance ratio statistics, and the au-
tomatic portmanteau test statistics perform well, aligning closely with the nominal sizes. The
three tests H3n, Tn, and ACn proposed by Aı̈t-Sahalia and Xiu (2019) (hereafter the AX tests),
together with the automatic and multiple-period variance ratio tests, exhibit more conservative
behavior, particularly at lower levels.

We further examine the power of the testing statistics at significance level of 1%. Our find-
ings are reported in Table 2. For each model, we examine small, medium, and large errors,
as measured by noise-to-signal (NSR) ratios at three levels: 5%, 10%, and 15%. The NSR is
defined as: NSR =

2nK2
γ(1−r1)

QV(X) , where r1 is the first-order autocorrelation of the χ process, and
QV(X) represents the average realized variance of the efficient returns based on 1,000 simula-
tions, serving as a proxy for the quadratic variation of the efficient price. Thus, NSR represents
the true ratio of the realized variance of pricing errors to that of efficient returns. Consequently,

θ > 1/2. Given that we are already evaluating different NSRs to assess test power, focusing on a single frequency
prevents the presentation of redundant results.

19We set unit variance for the process χ. In the simulation setting, we set θ = 0 in (2), as the value of θ does not
affect the results in finite samples once n (or ∆n) or γ are fixed.

18



Level
Tests

K0 K1 K2 H3n Tn ACn

1% 0.8 0.8 1.1 0.6 0.6 0.6
5% 4.8 5.4 4.2 3.9 3.9 3.8
10% 10.7 10.5 10.0 8.0 7.9 7.8

Level
Tests

VR2 VR4 VR10 AutoVR CD AutoQ

1% 0.7 1.1 0.9 0.4 0.5 1.0
5% 4.3 4.7 3.9 1.2 3.1 4.5
10% 9.5 10.5 9.0 3.2 6.1 9.9

Table 1: Sizes of Various Tests. Kℓ represents the jump-truncated version of our testing statistics H(Y ;Kℓ)
n
t as

defined in (6), with Kℓ specified in Theorem 3.2. The statistic AutoQ refers to the automatic portmanteau test
by Escanciano and Lobato (2009). VRq, q = 2, 4, 10 denote variance ratio tests with different horizon choices.
AutoVR is the automatic variance ratio test studied by Choi (1999). CD represents the multiple periods version of
the variance ratio test developed by Chow and Denning (1993). H3n, Tn, ACn are the three tests recommended by
Aı̈t-Sahalia and Xiu (2019). The sizes are calculated based on 1,000 simulations.

for each model, the three levels of K2
γ are determined by the formula K2

γ = NSR×QV(X)
2n(1−r1)

, which
are reported in the first rows of both the top and bottom panels of Table 2.

A quick observation is that our testing statistics win all 30 horseraces. Now, let’s elaborate
on the comparative performance of our tests versus others. When detecting strong errors with
a 15% NSR, there is always one test among the competing nine that has rejection rates close
to ours, often nearly 100%. However, the specific comparable test varies across models. For
medium errors with a 10% NSR, our tests begin to demonstrate significantly greater power
than others in several models, such as the AR(1) model with a coefficient of 0.9, the AR(2)
model with coefficients of 0.7 and -0.2, and the ARMA(1,1) model. Smaller errors (5% NSR)
are more challenging to detect, and the performance gap between the other tests and ours
widens further in the presence of these small errors. Across all models, our testing statistics
achieve greater rejection rates than the best of the alternative tests by a substantial margin.
This consistent outperformance supports our theory that our tests are capable of detecting
weak errors.

In summary, our method offers superior performance and robustness in detecting various
types of pricing errors. Compared to several commonly used state-of-the-art tests for serial
correlations, our test method outperforms all by a significant margin. We consider this an
important contribution to the classic literature in time series econometrics.

The supplementary materials Li and Yang (2025) present additional simulation results that
assess the performance of the two-sided tests under conditions featuring endogenous devia-
tions. These results also encompass other alternative models, including drift burst and long
memory processes.

6 Empirical Applications

In this section, we apply our method to demonstrate the applications using empirical data.
First, we identify the frequencies at which the intraday transaction price are deemed friction-
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free. Next, we assess the use of mid-quote as a proxy of the efficient prices.
A widely accepted principle in econometric analysis of intraday data is that subsampling

asset prices can greatly reduce the impact of pricing errors. Consequently, a prevalent ap-
proach in volatility estimation of the efficient price involves using subsamples at intervals over
several minutes (Andersen et al., 2000, 2003; Corradi and Distaso, 2006; Bandi and Russell,
2008; Diebold and Strasser, 2013). This practice helps in analyzing how quickly and effectively
market prices adjust to new information, thereby converging towards market efficiency.

Our empirical investigation is based on the transaction price of SPY, an S&P 500 ETF de-
signed to track the performance of the S&P 500 Index. We consider subsampling at five distinct
frequencies: every 1 second, 5 seconds, 10 seconds, 30 seconds, and 60 seconds for each trading
day from 2014 to 2021. For each subsample, we perform both our tests based on various hori-
zons and the other tests used in the simulation studies, namely, the three AX tests, the variance
ratio tests with various horizons, the automatic variance ratio test, the multiple periods vari-
ance ratio test, and the automatic portmanteau test. We then calculate the rejection fractions
for each year at 1% significance level, with the results reported in Table 3.

We have some quick observations. First, there is a clear trend of decreasing rejection rates
as the sampling frequency decreases from 1 second to 60 seconds. This suggests that pricing
errors are more likely to be detected at higher frequencies. Second, the rejection rates vary
substantially across years. The data reveals that from 2014 to 2017, rejection rates are higher,
especially at higher frequencies like 1-second and 5-second levels, compared to the period from
2018 to 2021. This trend suggests a significant improvement in market liquidity over time.

Comparing the test statistics, we observe results consistent with the simulation studies,
particularly in higher-frequency samples: our tests often show higher rejection rates than the
other tests. However, in 2017 to 2020, especially in 2020, our tests exhibit slightly lower rejec-
tion rates at the highest frequency (1-second) compared to the three AX tests.

One plausible explanation for the reduction in rejection rates of our test statistics is that, be-
ing left-sided tests, they may not capture persistent returns caused by drift bursts (Christensen
et al., 2022) or gradual jumps (Andersen et al., 2023), which result in statistics falling on the
right tails.20 However, the AX tests, being two-sided, attribute all deviations from the efficient
price such as drift bursts to pricing errors. While our two-sided tests provide a compelling ba-
sis for comparison with the AX tests, a right-sided test more directly identifies extreme drifts
in the price process, which produce highly positive autocovariances in returns.

Table 4 reports the rejection rates of our right-sided tests (K+
ℓ , ℓ = 0, 1, 2) at a 1% significance

level. In the years 2014 to 2016, and 2021, the rejection rates are zero. From 2017 to 2020,
the right-sided tests show positive rejection rates, which are especially high in 2018 and 2020.
Indeed, the years 2018 and 2020 were marked by extreme financial turmoil that was driven by,
e.g., trade tensions, interest rate hikes, the cryptocurrency crash, and the COVID-19 pandemic.
As a result, prolonged returns were more often observed, as suggested by the high rejection
rates of our right-sided tests. Therefore, the higher rejection rates by the three AX tests are

20In the presence of strong drifts, e.g., drifts of order
√
∆n (rather than ∆n), it is trivial to show that our testing

statistics will converge to positive infinity.
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likely influenced by factors beyond the usual pricing errors, or microstructure noise discussed
in the literature. Table 4 also highlights another advantage of our approach. By using left or
right tests, we can identify various deviations from the efficient price processes. This ability is
valuable for research in financial econometrics and empirical market microstructure.

In 2019 and 2020, AX tests show higher rejection rates than variance ratio tests and the port-
manteau test, which is distinct from simulation findings where AX tests usually have lower re-
jection rates. Although empirical rejection rates may not fully reflect test power in simulations,
a structural change in the serial correlation of SPY pricing errors could explain this difference
from the simulation studies. In fact, simulating an AR(1) pricing error process with a nega-
tive coefficient will make AX tests have higher power than other tests, although their power
remains lower than ours.

Despite we only focus on a single index for this empirical exercise, the results indicate
that intraday transaction prices can be treated as “error-free” at much higher frequencies than
the conventional 5 or 15 minutes. This finding is advantageous for empirical research using
intraday asset prices, as researchers benefit from a more extensive set of intraday prices that
can be considered as efficient.

Next, we assess the midquotes as proxies for efficient prices. The midquote, defined as
the average of the best bid and ask prices, is a fundamental concept in financial markets. It
often serves as a proxy for unobserved efficient prices (Hasbrouck, 2004). It is also crucial for
calculating the effective bid-ask spread (Hasbrouck, 2009; Hendershott et al., 2011). However,
Hagströmer (2021) recently argued that the midquote may not accurately represent the effi-
cient price, which is a continuous process. This poor proxy can introduce significant biases in
effective spread calculations.

We present a formal test to assess how closely the midquote approximates the efficient
price. Similar to the analysis in the previous subsection, we examine the midquotes of SPY
from 2014 to 2017, a period with fewer anomalies. The results are displayed in Table 5. The
results indicate that midquotes sampled at high frequencies, such as the 1-second level, poorly
approximate efficient prices. However, they are much closer to the efficient prices than the
transaction prices, as shown in Table 3. The effective spread represents the gap between trans-
action prices and the midquote. Our findings indicate that this effective spread accounts for a
substantial portion of the pricing errors, as midquotes converge to efficient prices more rapidly
than transaction prices. However, it does not capture the entirety of the pricing errors; other
components still contribute to serial covariances in the midquotes.

7 Conclusion

In efficient markets, asset returns over finer time scales exhibit no serial correlation across any
horizons. However, transitory pricing errors can induce return reversals, resulting in nonzero
autocovariances. Depending on the economic mechanisms and statistical properties of the
pricing errors, such reversals may be more pronounced at certain horizons, as confirmed by

21



extensive empirical studies in the finance literature.
We show that return reversals, driven by a broad range of pricing errors, actually occur

over a small set of horizons. Using this surprising yet practical insight, we propose a mini-
mum covariance approach to effectively capture these reversals within the identified horizons.
Thus, our method directly addresses the behavior of asset prices, and offers insights into mar-
ket efficiency, stock return predictability, and market liquidity. The test is easy to apply, and
nearly free from the selection of tuning parameters. Extensive numerical experiments demon-
strate the efficacy of our approach in detecting a wide range of pricing errors, and our test
outperforms several leading tests in the literature.

When applied to intraday data, our method assesses how closely a given series aligns with
martingale efficiency prices. It can identify subsampling frequencies that yield error-free re-
turns and evaluate the reliability of midquotes as proxies for efficient prices . Furthermore,
this method is instrumental in detecting various deviations from the semimartingales recently
discussed in the literature, including drift bursts, gradual jumps, price staleness, and rough
volatility.
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2014 1s 5s 10s 30s 60s
K0 99.6 65.1 36.5 7.9 7.9
K1 99.6 63.9 35.3 7.9 5.6
K2 100.0 63.1 34.5 6.3 4.0
H3n 99.6 54.8 30.6 10.7 8.3
Tn 99.6 54.8 30.6 10.3 6.7
ACn 99.6 52.0 30.6 9.1 9.1
VR2 99.2 52.4 28.2 6.3 5.2
VR4 98.8 46.4 25.8 6.3 2.0
VR10 96.0 38.5 17.1 2.4 0.4
AutoVR 99.6 47.6 24.6 6.0 2.4
CD 99.2 52.4 28.2 6.3 5.2
AutoQ 99.2 52.8 27.8 7.5 4.4

2015 1s 5s 10s 30s 60s
K0 98.0 43.7 22.6 6.3 3.6
K1 98.4 43.3 20.6 6.7 4.4
K2 98.0 42.1 17.5 4.4 2.8
H3n 97.6 34.1 13.9 7.5 5.6
Tn 97.6 34.5 13.5 7.1 4.4
ACn 97.6 34.1 12.3 5.6 4.4
VR2 94.0 29.8 8.3 4.0 3.2
VR4 92.9 26.2 8.3 3.6 2.8
VR10 84.5 17.9 7.1 0.8 0.0
AutoVR 96.4 29.8 9.1 3.2 1.2
CD 94.0 29.8 8.3 4.0 3.2
AutoQ 94.0 29.0 8.7 4.0 2.4

2016 1s 5s 10s 30s 60s
K0 98.4 52.4 27.8 9.1 8.3
K1 98.0 54.0 27.4 8.7 5.6
K2 97.6 53.2 25.8 7.1 3.2
H3n 98.4 44.4 23.4 7.5 7.1
Tn 98.4 44.0 23.4 7.1 6.0
ACn 98.4 43.7 23.4 7.9 4.8
VR2 91.7 38.1 17.5 4.8 5.6
VR4 88.5 33.3 16.3 5.6 3.6
VR10 81.7 27.8 12.3 2.8 0.8
AutoVR 96.4 38.1 15.9 3.6 1.2
CD 91.7 38.1 17.5 4.8 5.6
AutoQ 91.7 38.5 17.1 6.0 5.2

2017 1s 5s 10s 30s 60s
K0 99.6 72.1 36.7 14.3 8.8
K1 99.6 71.3 37.5 14.3 7.2
K2 99.6 71.3 34.7 10.8 6.0
H3n 100.0 59.0 29.9 12.0 8.8
Tn 100.0 59.0 29.5 10.8 8.8
ACn 100.0 59.4 27.1 8.8 7.2
VR2 94.0 53.0 23.1 7.6 9.2
VR4 93.6 51.4 22.3 10.0 3.6
VR10 91.6 45.8 18.7 2.8 1.2
AutoVR 99.2 53.8 23.5 5.2 3.6
CD 94.0 53.0 23.1 7.6 9.2
AutoQ 94.4 51.4 21.5 7.2 5.2

2018 1s 5s 10s 30s 60s
K0 76.5 25.9 7.6 4.4 2.4
K1 78.5 25.5 6.8 2.0 1.6
K2 77.7 23.9 5.2 0.8 0.4
H3n 76.9 22.3 8.8 4.0 1.2
Tn 76.9 21.5 8.0 4.4 1.6
ACn 77.3 21.1 7.6 4.0 1.2
VR2 60.2 15.1 3.6 1.6 0.8
VR4 55.0 13.5 4.0 0.0 1.6
VR10 45.4 8.8 1.6 0.0 0.0
AutoVR 71.7 19.9 4.0 0.4 0.4
CD 60.2 15.1 3.6 1.6 0.8
AutoQ 62.5 14.7 5.6 1.6 0.8

2019 1s 5s 10s 30s 60s
K0 92.9 23.8 11.5 1.2 2.0
K1 91.3 21.8 9.5 1.6 1.2
K2 90.1 20.2 8.3 1.6 0.8
H3n 90.1 29.4 17.1 5.6 4.0
Tn 89.7 29.8 17.5 4.8 4.4
ACn 89.7 29.0 17.5 5.6 5.6
VR2 62.7 15.9 4.8 1.6 1.2
VR4 59.5 14.7 7.5 0.8 0.8
VR10 52.8 10.7 2.4 0.4 0.0
AutoVR 87.3 23.0 13.9 2.0 1.2
CD 62.7 15.9 4.8 1.6 1.2
AutoQ 62.7 15.1 4.0 0.4 1.2

2020 1s 5s 10s 30s 60s
K0 71.1 15.4 4.0 1.6 0.0
K1 72.3 15.8 4.0 0.8 0.4
K2 71.9 17.0 3.2 0.4 0.8
H3n 76.3 21.7 8.7 3.6 7.1
Tn 76.3 22.5 9.1 4.0 5.5
ACn 76.3 21.3 7.9 4.3 4.0
VR2 47.4 11.1 3.2 0.8 0.8
VR4 44.3 7.9 4.0 0.0 0.4
VR10 37.2 4.3 1.2 0.4 0.0
AutoVR 70.8 13.4 6.3 0.4 1.2
CD 47.4 11.1 3.2 0.8 0.8
AutoQ 49.4 10.3 3.2 1.2 2.4

2021 1s 5s 10s 30s 60s
K0 88.5 12.3 0.4 3.2 0.8
K1 86.9 9.5 2.4 1.6 0.4
K2 85.7 10.3 3.6 0.8 0.4
H3n 84.9 15.5 12.7 5.2 4.8
Tn 84.9 15.5 13.5 6.0 3.2
ACn 84.9 15.5 11.5 4.8 2.4
VR2 68.7 6.3 6.3 3.6 0.8
VR4 61.5 6.7 7.1 1.6 0.8
VR10 49.2 5.2 4.0 2.0 0.0
AutoVR 79.0 11.9 8.7 3.2 0.8
CD 68.7 6.3 6.3 3.6 0.8
AutoQ 69.0 6.3 8.3 6.0 1.6

Table 3: Annual rejection rates of H0 for SPY from 2014 to 2021, across different subsampling frequencies.
K0,K1,K2 denote our tests with various horizons. AutoQ is the automatic portmanteau test proposed by Es-
canciano and Lobato (2009). The VRq, q = 2, 4, 10 tests are variance ratio tests with chosen horizons. AutoVR
refers to the automatic variance ratio test studied by Choi (1999). CD represents the multiple periods variance ratio
test developed by Chow and Denning (1993). The tests H3n, Tn, and ACn are recommended by Aı̈t-Sahalia and
Xiu (2019). All evaluations are at the 1% significance level.
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Tests
Year

2014 2015 2016 2017 2018 2019 2020 2021

K+
0 0.0 0.0 0.0 0.4 4.4 0.8 6.7 0.0

K+
1 0.0 0.0 0.0 0.4 3.6 0.4 3.6 0.0

K+
2 0.0 0.0 0.0 0.4 2.0 0.8 3.6 0.0

Table 4: Rejection rates by right-sided tests (K+
0 ,K

+
1 ,K

+
2 ) at the 1% significance level, using samples at 1 second

frequency. Right-sided tests examine return persistence, potentially driven by drift bursts or gradual jumps.

Year Tests 1s 5s 10s 30s 60s

2014

K0 83.3 25.4 10.7 3.6 6.3
K1 85.3 25.0 12.7 5.2 4.8
K2 84.1 26.2 11.9 3.2 3.6

2015

K0 67.5 15.9 8.7 3.2 2.8
K1 65.9 17.1 6.3 2.4 4.0
K2 65.9 13.5 4.8 2.0 2.4

2016

K0 46.0 18.3 10.3 5.2 6.3
K1 50.8 23.0 11.1 4.8 4.0
K2 51.2 21.8 10.7 2.8 2.8

2017

K0 63.3 16.7 12.0 8.0 7.6
K1 59.8 21.5 15.9 8.8 5.2
K2 57.8 21.1 17.1 7.6 5.2

Table 5: Annual rejection rates of H0 for SPY midquotes (2014-2017) using tests Kℓ (ℓ = 0, 1, 2) at 1% significance.
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Appendices

Appendix A Technical Conditions

In this section, we present and discuss the regularity conditions for the extensions outlined
in Section 4. First, we consider the Itô semimartingale, a comprehensive class of stochastic
processes that encompass nearly all continuous-time models used in finance and economics.

A.1 Itô semimartingale

For any Itô semimartingale Z considered in this paper, we assume it is defined on a filtered
probability space (Ω,F , (Ft)t≥0,P), and it can be represented as (Jacod and Protter, 2011):

Zt = Z0 +

∫ t

0
bZs ds+

∫ t

0
σZ
s dW

Z
s +

(
δZ1{|δZ |≤1}

)
⋆ (µ− ν)t +

(
δZ1{|δZ |>1}

)
⋆ µt, (9)

where WZ is a Brownian motion, the Poisson random measure µ is defined on R+ × R, and
its compensator is ν(ds, dz) = ds ⊗ λ(dz) for some given σ-finite measure λ. The processes
bZ , σZ are optional and locally bounded. The function δZ on Ω × R+ × R is predictable. We
further impose a mild regularity condition below for all Itô semimartingale considered in this
paper, which is not significantly stronger than the property of being an Itô semimartingale. In
fact, in virtually all models using Itô semimartingales, this condition is indeed satisfied, see a
discussion on p.170 of Aı̈t-Sahalia and Jacod (2014).

Assumption (H). Let Z be a semimartingale represented by (9). There exists a sequence of stopping
times {τn}n, a sequence of real numbers {wn}n, and for each n a deterministic nonnegative function
ΓZ
n on E so that the following hold for all (ω, t, z) with t ≤ τn(ω):

∣∣bZt (ω)∣∣ ≤ wn,
∣∣σZ

t (ω)
∣∣ < wn,

∣∣δZ(ω, t, z)∣∣ ≤ ΓZ
n (z),

∫
E

((
ΓZ
n (z)

)2 ∧ 1
)
λ(dz) < ∞.

A.2 Random observation scheme

Denote Fn
i := FTn

i
. The observation density process α satisfies

Assumption (O-ρ). Let α be an Itô semimartingales defined on (Ω,F , {Ft}t≥0,P) satisfying αt > 0

and αt− > 0 for all t > 0. We further assume

(i) ∆nnt
P−→ At.

(ii) For any κ ≥ 2, there exists a sequence of stopping times {τ(κ)m}m that increases to ∞, a sequence
of real numbers {w(κ)m}m, and some ρ > 0, satisfying:

∣∣E (
αn
i−1∆(n, i)

∣∣Fn
i−1

)
−∆n

∣∣ ≤ w(κ)m∆1+ρ
n , E

(∣∣αn
i−1∆(n, i)

∣∣κ∣∣Fn
i−1

)
≤ w(κ)m∆κ

n,

when Tn
i−1 ≤ τ(κ)m.
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A.3 Efficient price with jumps

We can introduce jumps into the efficient price process. We assume

Assumption (H-X). The efficient price process is represented as

Xt = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt, (10)

where Jt is a jump process driven by a homogeneous Poisson process summable over each finite time in-
terval. We further assume that the drift and volatility processes, b and σ, are also Itô semimartingales.21

Now we discuss the truncation procedure to eliminate jumps. Let un = u∆ϖ
n , where ϖ ∈

(0, 1/2), be a truncation level. The choice of u is well-established in the literature (Li et al.,
2013). It may be a constant or vary over time, depending on the underlying processes, such
as the average, or spot volatility of the (noisy) observed returns {∆n

i Y }i. In this paper, we
adopt the following truncation levels: unj := K

√
ĉnj∆

ϖ
n , where ĉnj := 1

dn∆n

∑j
i=j−dn+1(∆

n
i Y )2

with dn → ∞, or the average realized variance. Under the null hypothesis, this threshold will
asymptotically eliminate jumps. Under the alternative hypothesis, it will retain most of the
pricing errors that we aim to detect. We will use F (Y ; k)nt , H(Y ; k)nt to denote the truncated
version of our statistics F (Y ; k)nt and H(Y ; k)nt .

A.4 Pricing errors with stochastic scales

We can allow for a stochastic scale process for the pricing errors:

Assumption (N-θ-v). The pricing error process satisfies the following factorization:

εni := ∆θ
n · γni · χi, θ ∈ [0, 3/4),

where γ is a nonnegative Itô semimartingale; the process χ is stationary ρ-mixing sequence, and inde-
pendent of the σ-filed F∞ :=

∨
t>0Ft with mean 0 and variance 1, with E

(
|χi|4+ϵ

)
< ∞ for arbitrary

ϵ > 0. The ρ-mixing coefficient of χ satisfies ρk ≤ Kk−v for some constants K > 0, v > 0.

Moreover, we define the null and alternative hypotheses as H0 : ω ∈ Ω0
t and H1 : ω ∈ Ω1

t ,
where

Ω0
t :=

{
ω :

∫ t

0
γs(ω)

2dAs(ω) = 0
}

and Ω1
t :=

{
ω :

∫ t

0
γs(ω)

2dAs(ω) > 0
}
. (11)

Appendix B Additional Technical Results

In this section, we present the asymptotic results under the general setups. Recall that the
process A is the cumulative observation density function At :=

∫ t
0 αsds.

21Note that the assumption that b and σ are also Itô semimartingales is slightly stronger than local boundedness,
is necessary to handle the random observation scheme discussed in the previous section.
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Theorem B.1. Suppose that Assumptions (H-X) and (O-ρ) hold. For a given set of positive integers
K = {k1, . . . , km}, we have the following joint stable convergence on Ω0

t :(
F (Y ; k1)

n
t√

∆n
, . . . ,

F (Y ; km)nt√
∆n

)
Ls−→

(
Z1

t , . . . ,Z
m
t

)
, (12)

where conditional on F , (Zj
t )

m
j=1 are Gaussian variables with conditional covariances given by

Ẽ
(
Zj

tZ
j′

t | F
)
= Φkj ,kj′

∫ t

0

σ4
s

α2
s

dAs.

Consequently, we also have the following stable convergence in law

(H(Y ; kj)
n
t , H(Y ; kj′)

n
t )

Ls−→ (Θj ,Θj′), (13)

where (Θj ,Θj′) are a pair of standard normal variables with correlation ρkj ,kj′ , defined on an extension
of (Ω,F ,P) and is independent of F .

Theorem B.2. Let Kℓ := {1, 2, . . . , 2ℓ}. Given α ∈ (0, 1), let cα be the critical value that satisfies
ΣKℓ

(x1 ≥ cα, . . . , xm ≥ cα) = 1− α. The statistic H(Y ;Kℓ)
n
t has asymptotic size α in restriction to

the set Ω0
t :

P
(
H(Y ;Kℓ)

n
t < cα |Ω0

t

)
→ α.

When r1 ≤ 1− 2−ℓ, H(Y ;Kℓ)
n
t is consistent on the set Ω1

t :

P
(
H(Y ;Kℓ)

n
t < cα |Ω1

t

)
→ 1.

Appendix C Proof of Main Theorems

Proof of Theorem B.1. The convergence in (12) follows directly from Theorem S.11, and Lemma
S.7 in Li and Yang (2025). The convergence in (13) follows from (12) and Lemma S.9 in Li and
Yang (2025).

Proof of Theomre 3.2. Suppose this is not true: we have g(k, r) ≤ 0, or

rk ≥ 1

2
(1 + r2k), (14)

for all k ∈ {1, 2, . . . , 2ℓ}. We can use (14) to show recursively that

r1 ≥ 1− 1

2ℓ+1
+

r2ℓ+1

2ℓ+1
> 1− 1

2ℓ
,

which contradicts the fact that r1 ≤ 1− 1
2ℓ

.

Proof of Theorem B.2. The first part of the Theorem follows directly from Theorem B.1. We now
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show the consistency. In view of Theomre 3.2, Lemma S.8 and Lemma S.5 in Li and Yang
(2025), it suffices to show that

∆2−4θ
n Q(Y )nt

P−→ 0, (15)

for θ ∈ [0, 3/4). First of all, we observe that for θ ≥ 1/2, Q(Y )nt = Op(∆n). Thus, (15) holds
since θ < 3

4 . Now consider the scenario θ ∈ [0, 1/2), thus the dominating part in ∆n
i Y is the

pricing error, which is of order ∆θ
n. Then, it is trivial to get ∆2−4θ

n Q(Y )nt = Op(∆n)
P−→ 0,

which also implies (15).

Proofs of Theorem 3.1, Corollary 3.1, Theorem 3.4, Corollary 3.2. These results follow from Theo-
rem B.1.

Proofs of Theorem 3.3 and Theorem 3.5. The two theorems are special cases of Theorem B.2.
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