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Abstract

This note contains supplementary materials for Li et al. (2026). Appendix SA
provides additional simulation results to complement those in the main paper.
Appendix SB presents the detailed proofs of the main theoretical results in Li et al.
(2026). References to equations, theorems, lemmas, and figures prefixed with SA
or SB (e.g., Figure SA.1, Lemma SB.3) pertain to objects within this supplement;

unprefixed numbering denotes corresponding objects in the main paper.

Appendix SA Additional Simulations

First, we present additional simulation results to examine the finite-sample perfor-
mance of the spot liquidity estimator S(m)} under different choices of the local band-
width /,,. Specifically, we consider /,, € {2500, 3500} while keeping other simulation
settings identical to those in Appendix H. Figure SA.1 and Figure SA.2 illustrate the
estimation results for m € {1,3,5} with [, = 2500 and /,, = 3500, respectively. The

accuracy of the spot liquidity estimator S(m)}’ remains satisfactory across different
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choices of [/, demonstrating the robustness of our estimation method to the selection
of the local bandwidth [,,.

Next, we examine the finite-sample performance of the spot liquidity estimator
S(m)y and DOFI(m)} when employing the Toeplitz correction method proposed in
Appendix F. Figure SA.3 and Figure SA 4 illustrate the estimation results for S(m)}
(m € {1,3,5}), and the Q-Q plots for S(m)} (m € {1,5}) and DOFI(m)} (m € {5,10}),
respectively. All the parameter settings remain the same as those in Appendix H,
except that both the spot estimation and the estimation of the asymptotic variance
of DOFI(m)} incorporate the Toeplitz correction with m = m + 5. We can see that
the spot liquidity estimator S(m); performs well with the Toeplitz correction, and
the finite-sample distributions of both S(m)} and DOFI(m)} align closely with the
standard normal distribution after applying the Toeplitz correction, demonstrating the
robustness of the proposed correction method.

Lastly, to deal with the time-varying autocorrelation in order flows, we propose
a data-driven method to select k,, based on the pre-estimated value of DOFI(5);.
The selection rule is described in Algorithm 2. The order flow follows a time-varying
AR(1), defined by x7 = pix? ,++/1 — p2e; with {e;}, N (0,1) and the autoregressive
coefficient p; = 0.35 + 0.15 cos(27t}). We further set 7, = 1 + 0.05cos(2nt). All other
parametric settings remain the same as those in Appendix H. Figure SA.5 illustrates
the estimation results for S(m)} (m € {1,3,5}). It shows that our spot liquidity esti-
mator S(m); performs well even when the order flow autocorrelation is time-varying

using a data-driven selection method for the differencing parameter £, ,,.

Appendix SB Mathematical Proofs

In the following proofs, we follow Jacod et al. (2017) and Li and Linton (2022a) to let
Q=00 x QW) F=F9ggand P = PO g PO, where (Q©, FO (F,) >0, P?) is the
tiltered probability space where X, a, v and the observation times are defined. Let K
denote a constant independent of n, which can change across lines or within one line.

For any processes V and U, we define f(V,U, j; k)7 := (V" = V) (U, = Ul ph)
and f(V,U, ) = pin g;glf(v, U,j;kpn)?, where k,,, = k, + p. WhenV = U,
we further simplify the notations to f(V,j; k) and f(V,j)?, respectively. Note that
f(V,U,j; k)} reduces to f(j;k)} defined in the main text for V = U = Y. For integer
lp > 2k, +7,let1(5)? := {ny+ky,...,n+1,—k,—j} be an index set, where k,, = k,, +py.
We also denote the set of indices I} := {n; + 1,...,n; + 1, }.

Assumption (K). Let Z be an It6 semimartingale represented by (20). The component pro-
cesses bZ, o, and 67 are bounded with 6% (w, t,z) < J?(z) for some bounded function J(z)
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satisfying [, (J7(2))*A(dz) < oo

Using a classical localization procedure, it suffices to assume the following stronger

assumption to replace Assumption (H), (NL-v), and (O):

Assumption (S-HONL). Let Assumption (H), Assumption (O) and Assumption (NL-v)
hold, and we further assume that Assumption (K) holds for processes X, a and ~, and the
process 1/« is bounded.

SB.1 Proof of Technical Lemmas

Let ) be a real-valued function defined on R". It satisfies the Lipschitz condition with
polynomial growth of degree M if there exists a constant K > 0 such that for any = =
(@1, 2),y = (y1, -, yn) € RY, wehave [Q(2) = Q(y)| < K (1+ |2} + [ylY') [z =yl
where |z|; = Z?Zl |z;|. Examples of such functions include Q(z1,22) = z122 and
Q(z) = x*. In the subsequent Lemma SB.1, we assume the two functions () and Q' are
locally Lipschitz with polynomial growth of degree M, with M < 3, which is sufficient
for our analysis.

We introduce some extra notations. Let I, = {k, € Z : ¢ = 1,2,...,h} be a tuple
of integers of size h in an increasing order. Denote g, := k;, — k;. For any integer i,
we definei & I, := {i+ k, : k, € I,q = 1,2,...,h}. Denote Q(I,);— = (i — k) &
I, Q(Ip)itr == (i — k1) @ I,. Thus, Q(I,);— (resp. Q(I1);+) shifts the indices of I, such
that the largest (resp. smallest) index equals <.

Lemma SB.1. Given two positive integers h,h', let &' := Q(x} : k € Q1)) and " =
Q' (X} : k € QIy)i+). Then, for any positive integer j, we have

E (5 §z+y) E(&"E ( Z+])| SK@G "+ VO Van)An).

Proof of Lemma SB.1. We assume &£", ¢ have mean zero without loss of generality. De-
note their stationary approximations by & = QIX(K)r = k€ Q(In)i-); N{’jr] = Q' (X(k)e

ke Q) @sjy+)- Accordmg to Dahlhaus et al. (2019) Assumptlon (NL-v) can be ap-
plied to ff,flﬂ,f” and Zﬂ Thus, we have [|£]]2 V || ZﬂHg < K, |I§h, — ﬁng <
K(jVqy)A,, and || — @”HQ < Kq,A,. Then, apply Cauchy-Schwartz inequality, we

have

[E(&rern;) — BEE )| < 11117 — &0l + 1€ 12016 = &'l < K GV Ty V ) A

Next, let G/ := o(...,e;_1,¢;) be the filtration generated by the innovations upon the
i-th observation. Let Py, () := E(:|G}) —E(:|G}_, ) be the martingale difference operator.
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Let £(k)"" be a coupled version of £r with ey, replaced by e; which is an independent
copy of e;. Since e; is independent of e;, we have E( (k)i *]Qk> = (§”|Q,;_1>. Thus,
by Jensen’s inequality, we have

IPUEN = B (& — ERY G l, < 1€ — ER) 12 < Kdli — K, 2).

Similarly, we have HPk(NZ”}r M2 < Kd(i+ j — k,2). Then, use the projection decomposi-
tion and the Cauchy-Schwarz inequality and let m = i — k, we have

(&)

=13 _m(Pu@PuEn))] < an &) a1 Pe(E)le

<K d(m,2)d(m+j,2) < Kj™
m=0

This completes the proof. O

Now, we make the following decomposition:

LG —T()e = GG)y + G'(5)y + H(j)y + D),

where
Z% XXt —r(@)) GO = Y (i — (F)%) X,
X i€l X i€l (SBl)
HG)E = 7> (08 =) (e DO =7 D_(OF) = D) (Exdy = ().
™ elp " ielp

Next, we present a key limiting theorem. Its proof is an immediate consequence of
Lemma SB.2, Lemma SB.3, and Lemma SB.4, which we state and prove later.

Theorem SB.1. Let Assumption (S-HONL) hold, and further assume Condition B.4. Define
that G} := (G(5);, G(3")7) By == (H()Y, H(5')}), we have

u, (GPLH?) 2255 (G, HY) (SB.2)

where Gy == (G(j), G(4"):) , Hy == (H(j)s, H(j'):) are defined on an extension of (2, F,P),
which are two centered Gaussian random vectors, conditional on F, having the following co-

variance structure,

BGDGINF) = b st BEHOHGR) = o T g




E(G(j):H(j)|F) = E(GG)H ()|l F) = E(GG)H ()| F) = E(G()H(5)e|F) = 0.
(SB.4)

Lemma SB.2. Let Assumption (S-HONL) hold. Assume l,, — oo, and l,,A,, — 0asn — oo.
We have

w(H(j); — H'(j)7) — 0, (SB.5)

where

HG =7 ( / N a“udwu> r(i). (SB.6)

™ ey

Proof of Lemma SB.2. The process > can be expressed as follows:

=0+ /Otgsds + /Ot 5, AW, + (51{@51}) * (}3 - 9>t + (51{|5|>1}> xp,.

Under Assumption (H), it can also be represented as 77 = 72 + fot E’Sds + fot o, dWs+ M,
where the bounded process V. is defined as b, := b, + f|5|>1 J(s,2)A(dz), and M =

U (p—y9).
Next, for € € (0,1], we define Q(e)} := {|AM,| <eVse (¢t , ]}. Since the
interval (¢,¢" ., | becomes empty as n — co, we have P(Q(¢€)?') — 1 as n — oo for any

€ (0,1]. On Q(e)?, we further have 72 = 72 + f;g/(e)sds + fot o dW, + M(€); + J(€)s,
with

V() :=1b. — /{ . }5(3,2))\(dz), M(€)e =91 (r(<e * (p = 9)es J(€)e = VLir(eyse * 1,
I'(z)>e

Now, we make the decomposition (7")* — 77 — Lt? G dW, = 30 A(0)7 for any i € T,
where

A(1)" = /t He)uds, AR = My — M(e), AB) = T(e)r — (6.

Denote K7 := o{A(n,m) : n; + 1 < m < i}. Apply the estimate (8.9) in Jacod
and Todorov (2010) we have E(\Ql( Mo Kr) < K(i — ng)Ape (Y0 for any

€ [0,2]. Let ¢(¢) := f (r(2)<a) 2(2)A\(dz). Then by the Burkholder-Davis-Gundy in-
equality, we have

E(((2)7) Lo |Fe V K) < K(i = 1) Apg(e).



Next, we have for any r € [0, 2],
E(1203)? Lo KT) < K(i — no)A, / Mdz) < K (i — ng)Aye.
{r(z)>¢}
The above estimates yield the following
3
Up, n —((r— —-r
72D B0} L) < KV ALV e\ Vo).
" oem e=1

Since [,A,, — 0, P(Q2(¢)}) — 1lasn — oo for any € € (0,1], and ¢(¢) — 0 as e — 0, we
have lim,_o limsup,,_, u,E(|H(j)7 — H'(4)7] 1{a@)y;) = 0. The proof is complete. [

Lemma SB.3. Let the assumptions of Theorem SB.1 hold. If v > 1, [,, — oo and BPA, =0,

we have

u< H(j)?—H(j)?)ﬁo, u D) 50, u.G' () — 0, (SB.7)

where

ﬁ(])? = Ve Z (Wt? - Wt) r(4)s- (5B.8)

Proof of Lemma SB.3. Let H ()} := >icry 0t (Wi — W;) 7(5);. Thus, we have (recall
H'(j)} is defined in (SB.6))

n
tiJrl

HGE =T Gr= "5 w10 [ G- woam,

i t

which, by the orthogonality of the summands, yields

E(u2(H'(); = H(G)?) < KlAa(2A, A1),

Thus, u, (H’(j)? —ﬁ/(j)?) L0, or equivalently, u, (H’(j)? — %f[(])?) L,
which, combined with (SB.5), leads to the first convergence in (SB.7).
Now let B} := ((7}")* —77) (Xi'xi4; — 7(4)+), we have
1 o In1nutln—k
DGR =5 D (B +5 D, D BB, (SB.9)
n ey n k=1 i=n;+1

For k < [,—1, by the independence of 7 ©) and G, successive conditioning, Lemma SB.1,
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and the estimate (A.6) in Jacod et al. (2017), we have

sup [B (BB, | F) | < K (k7 V LA Ay + k(™ V 1A GPAY)

ity

which yields «2E((D(j))?) < Ku2(A Vi " EATVIZA2) < Ku2 (A, VIZA2) -5 0, under
the conditions I, — oo, [/ *A,, — 0,and v > 1. Now let &= (vt — ()?)XE X, by
successive conditioning and the Cauchy-Schwartz inequality, we have |E(€r¢?, )| <
KAY?fork > jand |E(€rer,, )| < KA, fork < j. Using a similar decomposition as in
(SB.9), we obtain E((G'(j)1)?) < K (I;'A, \/ AY?), which yields the last convergence
in (SB.7). O

Lemma SB.4. For any pairs of (j1, j2), (m1, ma) € N* x N*, let

Hy = (HGO7 HG2E) . GE = (G, Goma)y )

where H(j)} is defined in (SB.8) and G (5 := i 2iery (XIXE; —1(d)e) - Then, u, (H?, G™)
jointly converges stably in law to a pair of centered Gaussian vectors (H;, G;) defined on an
extension (Q, F,P) of the original probability space (0, F,P). Conditional on F, the limiting
variables ﬁt = (f[(jl)t, ﬁ(jg)t) and ét = (é(ml)t, é(mg)t) have the following covariance
structure:

B(AGOAG)) = 1o - T GG, o)) = s, mo)e

E(H(joGlme),) =0; for 0,0 € {1,2},
where s(my, ms); is defined in Theorem 4.2.

Proof of Lemma SB.4. Let H(j)1 := i ?;Zfil(nt + 1, — i)V A Uir(j):, where {U;}; is a
sequence of independent standard Gaussian random variables defined on an auxiliary
space (¥, F', "), such that the extension (ﬁ, F, f”) is the product filtered extension of
(Q, F,P) and (€, F',IP'). We first establish a convergence in law of u,H; to H,, where
H, = (H(j)7, H(j2)!). By Lemma 13.3.14 in Jacod and Protter (2011), it suffices to

check, for any j, j2 € N¥,

B (2 (FGHGT)) » Tt B (wHG)") o

Since I, = oo and ¢,, — cas n — oo, the first convergence above follows from the triv-
ial convergence that E'(H (j1) H (j2);/(1nA,)) — "0k The second convergence

1
can be obtained from the estimate that <W+nTn> S+, =) E(UHA2 < KI;' — 0,
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which follows from the i.i.d. property of {U;};, and the fact >_,(n; + 1, — i)* < K(I3).

Now let H(j)7 := i > ierp (e + 1y — VAU (5),, where U = ,/%@Ui. Apply
the arguments and estimates right before (B.97) in Li and Linton (2024), we have

E(u2(HG) ~ H(G)) € Kb AnAF 0DV 1,A,) -0,

thus un(ﬁ ()P — H(j)7) -5 0, which implies the convergence unﬁ? £, H,, where
By = (AGOE HG2)).

Next, using the convergence in law of unﬁ? to ﬁt, we demonstrate that unI:I? con-
verges stably in law to H,. This amounts to showing that for any bounded random

variable V' defined on (2, F,P) and any bounded, continuous function f : R? — R,
unE<V f(ﬁ?)) = E(v f(I:It)) —E(V)E ( f(ﬁt)>. (SB.10)

Let H, := o(W, : s > t). Then, H? becomes H, measurable; moreover, we can always
assume that V' is #; measurable—otherwise, we can replace it by E (V| ;). Let B, =
(tt+ 1), W(k)s = 7 1{B§7k}(u)qu, and we define a sequence of o-fields H,; =
o(W(k)s : s > 0). Note that \/,, H;r = H:. Thus, we canreplace V by V;, :=E (V| H; )
in (SB.10) since V;, — V in L' given that V is bounded and #;-measurable. Now
we take n large enough so that [,A,, < %, then ﬁ? is independent of the o-field H; .
Therefore, successive conditioning yields the first equality in the following chain of

equalities:
u B (VF(H)) =, B(V)E (F(E)) = uE(V)E (F(H)) - E(V)E'(f(H,).

where the second equality follows from the scaling and symmetric properties of the
Wiener process that yield distributional equivalence, and the last convergence is im-
plied by the convergence in law of u, H to H,. This proves (SB.10) hence the stable
convergence of u, H} to H;. Then, apply Theorem 2.10 and Proposition 3.3 in Dahlhaus
et al. (2019), we have u,G” converge in distribution to G, as I/?A, — 0. The FO-
stable convergence of u, G! to G, follows immediately from the independence of F(©)
and G. The joint convergence can be proved using the same arguments to prove The-
orem A.4 of Jacod et al. (2017). Now the proof is complete. [

Lemma SB.5. Let Assumption (S-HONL) hold, and further assume (k,, V 1,,)A,, — 0. Then,
we have

E(ILG)y —TG)Y) < KiVPkaAY2,



Where F( )t = In Zze]l(])t (’Yz) f(Xnm])?

Proof of Lemma SB.5. For any nonnegative integer p, we have the following decompo-
sition (recall ky = ki +p): F(Y. i kpa)i = () (X" 3 k)i = Y201 D(0)7, where

D) = (X, i kpn)is D2)] = F (XX T kpn)is DG)F = Xiyjnyn L (X7 T3 Kpin) i
D) =" X" X Jikpn)is DO =" (04 — %)X T5 kpn)?s

D(6); = 7" Xitjohyn S X7 T3 Bpn)is D) = X3, (0, X, 35 kpn)Ts

D)7 = Vi Ximky S (1 X" T3 kpn)is D) o= X,y Xtk jkpn S (Vo T3 Bpn)-

Define the filtration H}' := F', ~® G, thus D((); is always H}',, = measurable. By
successive conditioning, applying (A.6) and (A.7) from Jacod et al. (201 7), and consid-
ering the boundedness of the fourth moments of x", we have

KEZAY? if0=1,3,7,9;
E(E@@OFH)) < § Kkpnln,  if£=2,4,6,8;
KjA,, if ¢ = 5;

and

Kk2,A2, if0=1,3,7,9;
E(ID(0F) < {3 Kkpnln, if € =2,4,6,8;
KjA,. if ¢ =5.

Then, Lemma A.6 in Jacod et al. (2017) yields

KEEEAMCN VY, =137
-1 n —1/2 121172 A1/2 if £ = ,
E( ln Zieﬂ(j)? @(5)1 |) << Kl, kp,nAn (ln An7V 1) if£=2,4,68;

i PREAY AR v 1), i =5,

The result now readily follows since (&, V 1,,)A,, — 0. O

Lemma SB.6. Let Assumption (S-HONL) hold, and v > 1. We have

AV AV ) (SB.11)

B(F0) - T60?) < (-

pnn

where (7)== 1= 2 icrijyr (0 XX -
Proof of Lemma SB.6. We first decompose f(x", )" — XI'xly,; = €(1)F + €(2)F + ¢(3)7,
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n . nn n . n n n . n -1
where €<1)2 : —X; Xz—i—]—i—kn 6(2) = _Xz—‘,-sz kn> e( ) = i Zz 0 Xz kaner]Jrkpn
with X7 jip, = 1 ﬁ”Bl Xi+jthpn® Xihn = i ﬁ"al Xi“#,,- Then, by Holder’s in-
equality, we have

E([F(); - T )<K§F%§;m %famwaé

By the boundedness of v, it suffices to show that E(ZZGH Ew)r/l ) has the same
bound as in (SB.11) for / = 1,2,3. Next, by a direct apphcatlon of Lemma SB.1, we
have for 1 < k < k,, )E(ea)neu)gk) _ W ] < K(k:° V knA); and for k > ky,

g n

we have an upper bound for |E(&(1)r€(1)r,, )| < K(k," V k,A,), which follows from

the separating techniques used in the proof of Lemma S5 in Li and Linton (2022b) and
applying Lemma SB.1. The two estimates immediately lead to |E <zzeﬂ e(1)r/1 ) <
K (ﬁ VEV EnAn) . Similarly, we have the same bound for E(ZZGM ¢(2)r/1, )

Next, we consider the case where ¢ = 3. Let’s denote X (j; )7 := X{' 1., _pXi4 ik +p a0

m := |p—p/| forany 0 < p,p’ < p,. By Lemma SB.1, for k < k,, we have

i k‘ < K(ky" VEnA),

ERGPIXGP ) = k= ml)ey, vk +m < K(k,

which implies

T(k)t%@k - Pl
E(€3)!€(3)} ) — p—"p T Z (o =m = D)r(|k=m|)e,  -r(k+ml)e,
n n m=1

< K(k," VE,Ay).

Since v > 1, we have the following bound

r(k)2 2 R

'_;ﬂi+—§]m— Dr(lk =mle, ek mle,
k,72'u kv pnl

SK——+K——3 |k—m|™ < Kk™/pn.
DPn Dn m=1

Therefore, we get [E(€(3)7¢(3 .) forany k <k, — 1. For k >
k,, using similar arguments in Lemma S6 of Li and Lmton (2022b), we obtain an upper
bound for [E(X(j; p)iX(j; P')2s) | < K(k,"VEnA,), whichleads to |E(E(3)r€(3)7,,)| <
K(k;VV k,A,). Now, we obtain two similar bounds as we have for ‘E( (D)re)r,) |

)

E(3)r /1, ) as in (SB.11).

Hence, we can derive the same upper bound for ]E(Zle]1
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The proof is complete. L

Lemma SB.7. Let [,A,, — 0and (k, V p,)/\/I, — 0. We have
E(I0G) ~TG)T) = 0.
Proof of Lemma SB.7. Let L) — TGP = F(1)" + F(2)7, where

1
= Z ’71 ’YH-] )Q)X?X?—&-ja 3(2)? =T Z Ez 61—1—]

In i€l (j)p eI \I()y

By (A.6) in Jacod et al. (2017), the independence of F and G, we have E(|F(1)}]) <
K+/A,. Then, since the fourth moment of x" is finite we get E(|F(2)7]) < K(kn/l,).
Thus, we have unE(|f(j)? —T(j)r |> < Kun(AY? v E ) — 0. O

We now state some auxiliary lemmas used to prove the consistency of the asymp-

totic variance estimator. We define the following auxiliary quantities and filtration: for

q€{L, ... qn}, letH(dn); == F}  opa, @Gnit2g-1)dnr Uy = {ns+2qd,, -k, (2¢+
D = ko = 5%, LU da)iigy = @ Sierr, (F)XEXE and (G du)fiye = T du)ify);
L(j;d n)i(q—1);- In the subsequent proof, we use shorthand notations L'(j )y = I'(j;d )t( or
and O(j ) @( 73 dn)i Ha)p for brevity. We now introduce the ‘oracle” estimator for the
asymptotic variance as o2(j, j')} := 2% Py LO(j )y o(j ")a. The following lemma es-

tablishes the validity of this approximation.

Lemma SB.8. Let k, A p, — oo, and for any v > 2, d,k,A, — 0, d,k;° — 0 and
d,L,A,, — 0. We have

E(|o*(G,5)F — 323,47 ]) = 0. (SB.12)

Proof of Lemma SB.8. Let &(j;1); = F(j)f(q)? —f(j):‘(q)? and &(j;2); = f(j)j}(q)?—f(j)&q)?
where I'(j)? is defined in Lemma SB.5 (with bandwidth d,, here). We make the follow-
ing decomposition

o* (4,08 = 5= > O (60 05—6(; i)+ O (B 05 =6 (1" 1)) +6.(1');)-

=1 (=1 =1

First, since we have E((&(j; 1)7)%) < K >p_; Yy [E(D(0)D(¢)7)| and E(D(0)})?) <
Kk,A,forany ¢ =1,...,9andi € I" (see Lemma SB.5), we obtain that E((&(j; 1)")?)

q
Kk,A,. By the estimate above, Lemma SB.6, and the Cauchy-Schwarz inequality, for

IA
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qg,me€{l,...,q,}, we have

E(|6(; )6 1)0]) < KkaAn, E(|6(5;2)06(552)7 | (

Vg V),

and E(|6(j;1)"6(j;2)n]) < K(k.A )1/2( 1/2d;1/2\/k;”/2\/(EnAn)W). Next, ap-

m

n
q

nwLn\, — 0, ~j” < —+. Lastly, the Cauchy-Schwarz inequality, we
dpLnA E((0(5);)? Kd.!'. Lastly, by the Cauchy-Sch quality,

have

ply the Cauchy-Schwarz inequality to the decomposition of (©(j)")%, we obtain if

B (|G 1p00)
B (| (;2;80);

> < K(EnAn)lﬂd;lﬂ,

> < K( —1/2d 1/2\/]{7 v/2 \ (EnAn)l/Q) d;1/2.

Therefore, (SB.12) readily follows given all the asymptotic conditions. O

Then, we make the following decomposition

2qn

qn—1
P00 = (7<dn>;‘ +Z(dp)yy + U "+ Z w“)

where

2030 =T = kG Z(da)y = 2002 Vs UGN o= (Vg = Yooy ) 70
vyt = =202 g ¥y = = Z (g 205 vyt = 20U (g5
Vet = =2 UGy, v = 206D g = =205 UG);-

After some tedious but elementary calculations, we can establish the following es-

timates that will be used in the proof for Theorem D.1:

E(|d, ( (@) H(dn)) = e 56 i | ) < K (B A0V ;) (SB.13)
dLE(|UGUGE) < KdpLnAn. (SB.14)
E((Z(d,); ) ) K(d,?Vd,\,) (SB.15)
E(|E(vp! | H(d))]) < K(d,?7 v di?Ay,), if 1=1,2. (SB.16)
E(|E(wp! | H(d.))]) < KAY?, if 1=3,4,5,6. (SB.17)
E((vr')?) < K(d,> Vv d,A,), if 1=1,2. (SB.18)
E((vp")?) < Kdy?AY?(dt v dPAY?), if  1=3,4,5,6. (SB.19)
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SB.2 Proof of Main Theorems

Proof of Theorem 4.1. We have the decomposition that TG =TG) = GG+ G () +
G"(j)7, where G(j)7 and G'(j)} are defined in (SB.1), and G"(j)} := H(j);" + D(j)}-
Cauchy-Schwarz inequality and the bounded fourth moment of x" yield an upper
bound for E(|G'(5)7| V |G"(5)7]) < KVI1,A,. By (ii) of Theorem 2.7 (the local LLN) in
Dahlhaus et al. (2019), we have if [,A,, — 0, G(j)} 0. Thus, we have the conver-
gence T(j)r N I'():. The convergences of S(m)? and D/Oﬁ(m)? readily follow. [

Proof of Theorem 4.2. The results follows from Theorem SB.1 and the second and third

convergence in Lemma SB.3. [
Proof of Corollary 4.1. Theorem 4.2 admits a natural extension to a multivariate version.
Define T'(m)? := (I'(¢)1)m, and T'(m), := (I'(£),)™,. Then we have

un(D(m)y — T(m)) =5 Z,,

where Z, is an (m + 1)-dimensional centered Gaussian vector with (m + 1) x (m + 1)-
dimensional conditional covariance matrix 3; whose (i, j)-th entry is given by X(i, j); =
o%(i— 1,5 — 1);. Let g : R™™ — R with g(zg, ..., 7,) = 2\/2‘].‘9”0(]'; m)z;. We have

that the the (i + 1)-th entry of Vg(I'(m),) is given by 7 6(“{;&)‘ e fori=0,...,m.
51<m A5 t
2p51<m 0Gm)T(5)e m () .
Note that we have DOFI(m), = == -1 = QZj:19(m)eré§t~ Define

g R™ = Rby g'(vg,...,2) = 23772, 0(j;m);L, and let &'(i;m); denote the
(i + 1)-th entry of Vg'(F(m)t). We obtain that &'(0;m); = —%0)% > 03 m)T ()
and &'(j;m), = 2(;((](;;? ) for j = 1,...,m. Now, the first and second part of Corollary
4.1 follow from applications of the Delta method to the function g and ¢/, respectively.

The proof is now complete. O
Now, we make the following decomposition:
3
ZG)7 =T 0N = TG = GO+ HG) + DG+ GG) + 3 RGO, (5B.20)
=1
where R(ji 1)f = D7) ~T(7)f, R(js 2 =T =), and R(G; 3)7 = L(7)F T ()7

Proof of Theorem C.1. First, we show that

un Y RGO =0 (SB.21)
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under Condition B.4. By Lemma SB.5, we have u,E(|R(5; 1)}'|) — 0if (k, vV I,)A, — 0
and u,,1; %k, AY? 5 0. Next, by Lemma SB.6, if p,, — oo, u2k;" — 0,and u2k,A, — 0,
we get u2E((R(J; 2)?)2) — 0. Lastly, by Lemma SB.7, if [,A,, — 0 and k,,/+/I,, — 0, we
have u,E(|%(5;3)}|) — 0. (SB.21) is proved. Now, Theorem C.1 is a consequence of
Theorem SB.1, Lemma SB.3 and (SB.21). This concludes the proof. [

Proof for Theorem D.1. Inview of (5B.13) and (SB.14), under the conditions d,, L, A,, — 0

and v > 2, it follows that, as n — oo, we have

gn—1

—Z (| Z @) 205) = g o |) < K (@80 ;) =0
3 22 BB A ) =g ) < K (630 v ) 0,
—%Z N2)) < KdyLyA, — 0.

Using the estimates above, Proposition 3.3 in Dahlhaus et al. (2019) and (B.80) in Li
and Linton (2024), we deduce that

QH_l qn—1
dn, -
dn dn —1
(SB.22)
d gn—1
—" Z U(j — 0. (SB.23)

Let U(1;d,)! = Z(dy)? — E(Z(dn)2|H(dn)2), ©(2;dyn)t = 2! + 422, and U (3;d,,)7 =
Yt 4+ 4 S, which are #(d,)?,, measurable. First, by successive condi-
tioning, for all ¢ € {1,...,¢,}, we have E(|E(¥(1; n)q]’H( dn)y)|) = 0. Next, by (SB.16)
and (SB.17), for ¢ € {1 ... qn}, we obtain E(|E(¥(2;d,)2H(d,)2)|) < K(dn Ve
d*A,) and E(|E(¥(3; d.)2[H(do)2)|) < KAY?. Then, by (SB.15), (SB.18), and (SB.19),
we have, E((\If(l,dn)q) ) +E((¥(2:d,)0)?) < K(d,? V d,A,) and E((¥(3;d,))?) <
Kd/>AY (-t v 4 Ay ?). Thus, by Lemma A.6 in Jacod et al. (2017), we obtain
IE( (15 d, ) ) < K(qédﬁ +gid, Aé), E(’ g (2; dn)gD < K(gndn®
G At dn* +gidy AR, and B (|0 031 d)g ) < K (0,07 + i di A+ gddi AL ).

—v
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The estimates above imply that, under Condition B.5,as n — oo, for ¢ = 1,2, 3, we have

d
—E
Gn

Apply the same argument as above for ¥(1;d,); _,, we get Z—ZE(] an T (1; dn)y_1l) =

gn—1

> V(td);
q=1

> — 0. (SB.24)

q=1
0. Now, in view of (SB.22), (5B.23), and (SB.24), we have (3, j')? N vis(4,4")s. Fi-
nally, Theorem D.1 follows from (SB.12). The proof is now complete. O

Proof for Theorem 4.3. We first show that Z(j)7 0. By Lemma SB.5, if (k,, VI,)A,, — 0
and k0, "*A)/* = 0, we have E(|%R(j;1)7]) — 0. Then, by Lemma SB.6, when k,,, ,, —
oo and v > 1, we obtain E((9(j;2)7)°) — 0. Lastly, by Lemma SB.7, if 1,4, — 0
and k,/l, — 0, we have E(|%(j;3)?|) — 0. Now, together with Theorem 4.1, the
tirst part of (12) is proved, and the second and third part of it immediately follow by
the Slutsky theorem. (13) is an immediate consequence of Theorem C.1, specialized
to the degenerate case with a regular observation scheme, combined with the proof
technique of Corollary 4.1 and Theorem D.1. The proof is now complete. O
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Figure SA.5: The solid blue lines plot the mean across 1,000 replications of the spot estimators S(m)}
(11) for m € {1,3,5}. Blue shading denotes the corresponding 95% simulated confidence intervals.
Red stars mark the true liquidity values S(m); defined in (4). Pink dashed lines report the means of
the infeasible sample-analogue estimates S (m)} defined in (9). We consider order flows x follows a
tvAR(1) model defined by x? = p;x" ; + /1 — p?e; with {e;}; ECYe (0,1) and the autoregressive
coefficient p; = 0.35 + 0.15 cos(27t}). We further let v, = 1 + 0.05 cos(2nt). We set the scale of the noise
as K, =5 x 10~ We let [, = 3000 for all estimations, and adopt the data-driven selection method for
kn,p as shown in Algorithm 2.

20



References

DAHLHAUS, R., S. RICHTER, AND W. B. WU (2019): “Towards a general theory for

nonlinear locally stationary processes,” Bernoulli, 25, 1013 — 1044.

Jacop, J., Y. L1, AND X. ZHENG (2017): “Statistical properties of microstructure
noise,” Econometrica, 85, 1133-1174.

JAcOD, J. AND P. E. PROTTER (2011): Discretization of Processes, vol. 67, Springer Sci-
ence & Business Media.

JACOD, J. AND V. TODOROV (2010): “Do price and volatility jump together?” Annals
of Applied Probability, 20, 1425-1469.

L1, Z. M. AND O. LINTON (2022a): “A ReMeDI for microstructure noise,” Economet-
rica, 90, 367-389.

(2022b): “Supplementary Material for "A REMEDI FOR MICROSTRUCTURE
NOISE",” Econometrica, 90, 367-389, supplementary Material.

(2024): “Robust estimation of integrated and spot volatility,” Journal of Econo-
metrics.

L1, Z. M., O. LINTON, Y. ZHAI, AND H. ZHANG (2026): “Designing High-Frequency
Market Liquidity Measures with Applications to Monetary Policy,” Working Paper.

21



	Appendix Additional Simulations
	Appendix Mathematical Proofs
	Proof of Technical Lemmas
	Proof of Main Theorems


