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Abstract

This note contains supplementary materials for Li et al. (2026). Appendix SA

provides additional simulation results to complement those in the main paper.

Appendix SB presents the detailed proofs of the main theoretical results in Li et al.

(2026). References to equations, theorems, lemmas, and figures prefixed with SA

or SB (e.g., Figure SA.1, Lemma SB.3) pertain to objects within this supplement;

unprefixed numbering denotes corresponding objects in the main paper.

Appendix SA Additional Simulations

First, we present additional simulation results to examine the finite-sample perfor-
mance of the spot liquidity estimator S(m)nt under different choices of the local band-
width ln. Specifically, we consider ln ∈ {2500, 3500} while keeping other simulation
settings identical to those in Appendix H. Figure SA.1 and Figure SA.2 illustrate the
estimation results for m ∈ {1, 3, 5} with ln = 2500 and ln = 3500, respectively. The
accuracy of the spot liquidity estimator S(m)nt remains satisfactory across different
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choices of ln, demonstrating the robustness of our estimation method to the selection
of the local bandwidth ln.

Next, we examine the finite-sample performance of the spot liquidity estimator
S(m)nt and DOFI(m)nt when employing the Toeplitz correction method proposed in
Appendix F. Figure SA.3 and Figure SA.4 illustrate the estimation results for S(m)nt

(m ∈ {1, 3, 5}), and the Q-Q plots for S(m)nt (m ∈ {1, 5}) and DOFI(m)nt (m ∈ {5, 10}),
respectively. All the parameter settings remain the same as those in Appendix H,
except that both the spot estimation and the estimation of the asymptotic variance
of DOFI(m)nt incorporate the Toeplitz correction with m = m + 5. We can see that
the spot liquidity estimator S(m)nt performs well with the Toeplitz correction, and
the finite-sample distributions of both S(m)nt and DOFI(m)nt align closely with the
standard normal distribution after applying the Toeplitz correction, demonstrating the
robustness of the proposed correction method.

Lastly, to deal with the time-varying autocorrelation in order flows, we propose
a data-driven method to select kn,p based on the pre-estimated value of DOFI(5)nt .
The selection rule is described in Algorithm 2. The order flow follows a time-varying
AR(1), defined by χni = ρiχ

n
i−1+

√
1− ρ2

i ei with {ei}i i.i.d.∼ N (0, 1) and the autoregressive
coefficient ρi = 0.35 + 0.15 cos(2πtni ). We further set γ′t = 1 + 0.05 cos(2πt). All other
parametric settings remain the same as those in Appendix H. Figure SA.5 illustrates
the estimation results for S(m)nt (m ∈ {1, 3, 5}). It shows that our spot liquidity esti-
mator S(m)nt performs well even when the order flow autocorrelation is time-varying
using a data-driven selection method for the differencing parameter kn,p.

Appendix SB Mathematical Proofs

In the following proofs, we follow Jacod et al. (2017) and Li and Linton (2022a) to let
Ω = Ω(0) × Ω(1), F = F (0) ⊗ G and P = P(0) ⊗ P(1), where (Ω(0),F (0), (Ft)t≥0,P(0)) is the
filtered probability space where X,α, γ and the observation times are defined. Let K
denote a constant independent of n, which can change across lines or within one line.

For any processes V and U , we define f(V, U, j; k)ni :=
(
V n
i − V n

i−k
) (
Un
i+j − Un

i+j+k

)
and f(V, U, j)ni := 1

pn

∑pn−1
p=0 f(V, U, j; kp,n)ni , where kp,n = kn + p. When V = U ,

we further simplify the notations to f(V, j; k)ni and f(V, j)ni , respectively. Note that
f(V, U, j; k)ni reduces to f(j; k)ni defined in the main text for V = U = Y . For integer
ln ≥ 2kn+j, let I(j)nt := {nt+kn, . . . , nt+ln−kn−j} be an index set, where kn = kn+pn.
We also denote the set of indices Int := {nt + 1, . . . , nt + ln}.

Assumption (K). Let Z be an Itô semimartingale represented by (20). The component pro-
cesses bZ , σZ , and δZ are bounded with δZ(ω, t, z) ≤ JZ(z) for some bounded function JZ(z)
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satisfying
∫
R(JZ(z))2λ(dz) <∞.

Using a classical localization procedure, it suffices to assume the following stronger
assumption to replace Assumption (H), (NL-v), and (O):

Assumption (S-HONL). Let Assumption (H), Assumption (O) and Assumption (NL-v)
hold, and we further assume that Assumption (K) holds for processes X , α and γ, and the
process 1/α is bounded.

SB.1 Proof of Technical Lemmas

Let Q be a real-valued function defined on Rh. It satisfies the Lipschitz condition with
polynomial growth of degree M if there exists a constant K > 0 such that for any x =

(x1, . . . , xh), y = (y1, . . . , yh) ∈ Rh, we have |Q(x)−Q(y)| ≤ K
(
1 + |x|M1 + |y|M1

)
|x−y|1,

where |x|1 :=
∑h

i=1 |xi|. Examples of such functions include Q(x1, x2) = x1x2 and
Q(x) = x4. In the subsequent Lemma SB.1, we assume the two functions Q and Q′ are
locally Lipschitz with polynomial growth of degreeM , withM ≤ 3, which is sufficient
for our analysis.

We introduce some extra notations. Let Ih = {kq ∈ Z : q = 1, 2, . . . , h} be a tuple
of integers of size h in an increasing order. Denote qh := kh − k1. For any integer i,
we define i ⊕ Ih := {i + kq : kq ∈ Ih, q = 1, 2, . . . , h}. Denote Q(Ih)i− := (i − kh) ⊕
Ih,Q(Ih)i+ := (i − k1) ⊕ Ih. Thus, Q(Ih)i− (resp. Q(Ih)i+) shifts the indices of Ih such
that the largest (resp. smallest) index equals i.

Lemma SB.1. Given two positive integers h, h′, let ξni := Q(χnk : k ∈ Q(Ih)i−) and ξ′ni :=

Q′(χnk : k ∈ Q(Ih′)i+). Then, for any positive integer j, we have

|E
(
ξni ξ

′n
i+j

)
− E(ξni )E

(
ξ′ni+j

)
| ≤ K(j−v + (j ∨ qh ∨ qh′)∆n).

Proof of Lemma SB.1. We assume ξn, ξ′n have mean zero without loss of generality. De-
note their stationary approximations by ξ̃ni := Q(χ̃(k)tni : k ∈ Q(Ih)i−); ξ̃′ni+j := Q′(χ̃(k)tni :

k ∈ Q(Ih′)(i+j)+). According to Dahlhaus et al. (2019), Assumption (NL-v) can be ap-
plied to ξni , ξ

n
i+j, ξ̃

n
i and ξ̃ni+j . Thus, we have ‖ξni ‖2 ∨ ‖ξ̃′ni+j‖2 ≤ K, ‖ξ′ni+j − ξ̃′ni+j‖2 ≤

K(j ∨ qh′)∆n, and ‖ξni − ξ̃ni ‖2 ≤ Kqh∆n. Then, apply Cauchy-Schwartz inequality, we
have

|E
(
ξni ξ

′n
i+j

)
− E(ξ̃ni ξ̃

′
i+j)| ≤ ‖ξni ‖2‖ξ′ni+j − ξ̃′ni+j‖2 + ‖ξ̃′ni+j‖2‖ξni − ξ̃ni ‖2 ≤ K(j ∨ qh ∨ qh′)∆n.

Next, let G ′i := σ(. . . , ei−1, ei) be the filtration generated by the innovations upon the
i-th observation. Let Pk(·) := E(·|G ′k)−E

(
·|G ′k−1

)
be the martingale difference operator.
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Let ξ̃(k)n,∗i be a coupled version of ξ̃ni with ek replaced by e∗k which is an independent
copy of ek. Since e∗k is independent of ek, we have E

(
ξ̃(k)n,∗i |G ′k

)
= E

(
ξ̃ni |G ′k−1

)
. Thus,

by Jensen’s inequality, we have

‖Pk(ξ̃ni )‖2 =
∥∥E(ξ̃ni − ξ̃(k)n,∗i |G ′k

)∥∥
2
≤ ‖ξ̃ni − ξ̃(k)n,∗i ‖2 ≤ Kd(i− k, 2).

Similarly, we have ‖Pk(ξ̃′ni+j)‖2 ≤ Kd(i+ j − k, 2). Then, use the projection decomposi-
tion and the Cauchy-Schwarz inequality and let m = i− k, we have

∣∣∣E(ξ̃ni ξ̃′ni+j)∣∣∣ =
∣∣∣∑i

k=−∞
E
(
Pk(ξ̃ni )Pk(ξ̃′ni+j)

)∣∣∣ ≤ i∑
k=−∞

‖Pk(ξ̃ni )‖2‖Pk(ξ̃′ni+j)‖2

≤ K
∞∑
m=0

d(m, 2)d(m+ j, 2) ≤ Kj−v.

This completes the proof.

Now, we make the following decomposition:

Γ̂(j)nt − Γ(j)t := G(j)nt +G′(j)nt +H(j)nt +D(j)nt ,

where

G(j)nt :=
1

ln

∑
i∈Int

γ2
t

(
χni χ

n
i+j − r(j)t

)
, G′(j)nt :=

1

ln

∑
i∈Int

(
γni γ

n
i+j − (γni )2

)
χni χ

n
i+j,

H(j)nt =
1

ln

∑
i∈Int

(
(γni )2 − γ2

t

)
r(j)t, D(j)nt =

1

ln

∑
i∈Int

((γni )2 − γ2
t )(χ

n
i χ

n
i+j − r(j)t).

(SB.1)

Next, we present a key limiting theorem. Its proof is an immediate consequence of
Lemma SB.2, Lemma SB.3, and Lemma SB.4, which we state and prove later.

Theorem SB.1. Let Assumption (S-HONL) hold, and further assume Condition B.4. Define
that Gn

t := (G(j)nt , G(j′)nt ) ,Hn
t := (H(j)nt , H(j′)nt ), we have

un (Gn
t ,H

n
t )

Ls−→ (Gt,Ht) , (SB.2)

where Gt := (G(j)t, G(j′)t) ,Ht := (H(j)t, H(j′)t) are defined on an extension of (Ω,F ,P),
which are two centered Gaussian random vectors, conditional on F , having the following co-
variance structure,

Ẽ(G(j)tG(j′)t|F) =
1

1 + c
·γ4
t ·s(j, j′)t, Ẽ(H(j)tH(j′)t|F) =

c

1 + c
· σ̃

2
t r(j)tr(j)

′
t

3αt
, (SB.3)
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Ẽ(G(j)tH(j)t|F) = Ẽ(G(j)tH(j′)t|F) = Ẽ(G(j′)tH(j)t|F) = Ẽ(G(j′)tH(j′)t|F) = 0.

(SB.4)

Lemma SB.2. Let Assumption (S-HONL) hold. Assume ln →∞, and ln∆n → 0 as n→∞.
We have

un(H(j)nt −H ′(j)nt )
P−→ 0, (SB.5)

where

H ′(j)nt :=
1

ln

∑
i∈Int

(∫ tni

t

σ̃udWu

)
r(j)t. (SB.6)

Proof of Lemma SB.2. The process γ2 can be expressed as follows:

γ2
t = γ2

0 +

∫ t

0

b̃sds+

∫ t

0

σ̃sdWs +
(
ϑ̃1{|ϑ̃|≤1}

)
?
(
p− q

)
t
+
(
ϑ̃1{|ϑ̃|>1}

)
? p

t
.

Under Assumption (H), it can also be represented as γ2
t = γ2

0 +
∫ t

0
b̃′sds+

∫ t
0
σ̃sdWs+Mt,

where the bounded process b̃′s is defined as b̃′s := b̃s +
∫
|ϑ̃|>1

ϑ̃(s, z)λ(dz), and M :=

ϑ̃ ? (p− q).
Next, for ε ∈ (0, 1], we define Ω(ε)nt :=

{
|∆Ms| ≤ ε,∀ s ∈

(
t, tnnt+ln

]}
. Since the

interval
(
t, tnnt+ln

]
becomes empty as n→∞, we have P(Ω(ε)nt )→ 1 as n→∞ for any

ε ∈ (0, 1]. On Ω(ε)nt , we further have γ2
t = γ2

0 +
∫ t

0
b̃′(ε)sds +

∫ t
0
σ̃sdWs + M(ε)t + J(ε)t,

with

b̃′(ε)s := b̃′s −
∫
{Γ(z)>ε}

ϑ̃(s, z)λ(dz), M(ε)t := ϑ̃1{Γ(z)≤ε} ? (p− q)t, J(ε)t := ϑ̃1{Γ(z)>ε} ? pt.

Now, we make the decomposition (γni )2 − γ2
t −

∫ tni
t
σ̃udWu =

∑3
`=1 A(`)ni for any i ∈ Int ,

where

A(1)ni :=

∫ tni

t

b̃′(ε)sds, A(2)ni := M(ε)tni −M(ε)t, A(3)ni := J(ε)tni − J(ε)t.

Denote Kni := σ{∆(n,m) : nt + 1 ≤ m ≤ i}. Apply the estimate (8.9) in Jacod
and Todorov (2010), we have E

(
|A(1)ni |1{Ω(ε)nt }|Kni

)
≤ K(i − nt)∆nε

−((r−1)∨0) for any
r ∈ [0, 2]. Let φ(ε) :=

∫
{Γ(z)≤ε} Γ2(z)λ(dz). Then, by the Burkholder-Davis-Gundy in-

equality, we have

E
(
(A(2)ni )21{Ω(ε)nt }|Ft ∨ Kni

)
≤ K(i− nt)∆nφ(ε).
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Next, we have for any r ∈ [0, 2],

E
(
|A(3)ni |1{Ω(ε)nt }|Kni

)
≤ K(i− nt)∆n

∫
{Γ(z)>ε}

λ(dz) ≤ K(i− nt)∆nε
−r.

The above estimates yield the following

un
ln

∑
i∈Int

3∑
`=1

E
(
|A(`)ni |1{Ω(ε)nt }

)
≤ K

√
ln∆n(ε−((r−1)∨0) ∨ ε−r)

∨√
φ(ε).

Since ln∆n → 0, P(Ω(ε)nt ) → 1 as n → ∞ for any ε ∈ (0, 1], and φ(ε) → 0 as ε → 0, we
have limε→0 lim supn→∞ unE

(
|H(j)nt −H ′(j)nt |1{Ω(ε)nt }

)
= 0. The proof is complete.

Lemma SB.3. Let the assumptions of Theorem SB.1 hold. If v > 1, ln →∞ and l3/2n ∆n → 0,
we have

un

(
σ̃t√
αt
H̃(j)nt −H(j)nt

)
P−→ 0, unD(j)nt

P−→ 0, unG
′(j)nt

P−→ 0, (SB.7)

where

H̃(j)nt :=

√
αt
ln

∑
i∈Int

(
Wtni
−Wt

)
r(j)t. (SB.8)

Proof of Lemma SB.3. Let H
′
(j)nt := 1

ln

∑
i∈Int

σ̃t
(
Wtni
−Wt

)
r(j)t. Thus, we have (recall

H ′(j)nt is defined in (SB.6))

H ′(j)nt −H
′
(j)nt =

r(j)t
ln

∑
i∈Int

(nt + ln − i)
∫ tni+1

tni

(σ̃s − σ̃t)dWs,

which, by the orthogonality of the summands, yields

E
(
u2
n(H ′(j)nt −H

′
(j)nt )2

)
≤ Kln∆n(l2n∆n ∧ 1).

Thus, un
(
H ′(j)nt −H

′
(j)nt

)
P−→ 0, or equivalently, un

(
H ′(j)nt − σ̃t√

αt
H̃(j)nt

)
P−→ 0,

which, combined with (SB.5), leads to the first convergence in (SB.7).
Now let Bn

i := ((γni )2 − γ2
t ) (χni χ

n
i+j − r(j)t), we have

(D(j)nt )2 =
1

l2n

∑
i∈Int

(Bn
i )2 +

2

l2n

ln−1∑
k=1

nt+ln−k∑
i=nt+1

Bn
iB

n
i+k. (SB.9)

For k ≤ ln−1, by the independence ofF (0) and G, successive conditioning, Lemma SB.1,
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and the estimate (A.6) in Jacod et al. (2017), we have

sup
i∈Int

∣∣E(Bn
iB

n
i+k|Ft

)∣∣ ≤ K
(
(k−v ∨ ln∆n)ln∆n + k(k−v ∨ ln∆n)l1/2n ∆3/2

n

)
,

which yields u2
nE((D(j)nt )2) ≤ Ku2

n(∆n∨l−v+ 3
2

n ∆
3
2
n∨l2n∆2

n) ≤ Ku2
n(∆n∨l2n∆2

n)→ 0, under
the conditions ln →∞, l3/2n ∆n → 0, and v > 1. Now let Cni := (γni γ

n
i+j−(γni )2)χni χ

n
i+j , by

successive conditioning and the Cauchy-Schwartz inequality, we have
∣∣E(Cni Cni+k)∣∣ ≤

K∆
3/2
n for k ≥ j and

∣∣E(Cni Cni+k)∣∣ ≤ K∆n for k < j. Using a similar decomposition as in
(SB.9), we obtain E((G′(j)nt )2) ≤ K

(
l−1
n ∆n

∨
∆

3/2
n

)
, which yields the last convergence

in (SB.7).

Lemma SB.4. For any pairs of (j1, j2), (m1,m2) ∈ N∗ × N∗, let

H̃n
t :=

(
H̃(j1)nt , H̃(j2)nt

)
, G̃n

t :=
(
G̃(m1)nt , G̃(m2)nt

)
,

where H̃(j)nt is defined in (SB.8) and G̃(j)nt := 1
ln

∑
i∈Int

(
χni χ

n
i+j − r(j)t

)
. Then, un(H̃n

t , G̃
n
t )

jointly converges stably in law to a pair of centered Gaussian vectors (H̃t, G̃t) defined on an
extension (Ω̃, F̃ , P̃) of the original probability space (Ω,F ,P). Conditional on F , the limiting
variables H̃t := (H̃(j1)t, H̃(j2)t) and G̃t := (G̃(m1)t, G̃(m2)t) have the following covariance
structure:

Ẽ
(
H̃(j1)tH̃(j2)t

)
=

c

1 + c
· r(j1)tr(j2)t

3
, Ẽ

(
G̃(m1)tG̃(m2)t

)
=

1

1 + c
· s(m1,m2)t;

Ẽ
(
H̃(j`)tG̃(m`′)t

)
= 0; for `, `′ ∈ {1, 2},

where s(m1,m2)t is defined in Theorem 4.2.

Proof of Lemma SB.4. Let H(j)nt := 1
ln

∑nt+ln
i=nt+1(nt + ln − i)

√
∆nUir(j)t, where {Ui}i is a

sequence of independent standard Gaussian random variables defined on an auxiliary
space (Ω′,F ′,P′), such that the extension (Ω̃, F̃ , P̃) is the product filtered extension of
(Ω,F ,P) and (Ω′,F ′,P′). We first establish a convergence in law of unH

n

t to H̃t, where
H
n

t :=
(
H(j1)nt , H(j2)nt

)
. By Lemma 13.3.14 in Jacod and Protter (2011), it suffices to

check, for any j1, j2 ∈ N∗,

E′
(
u2
n

(
H(j1)ntH(j2)nt

))
→ cr(j1)tr(j2)t

3(1 + c)
, E′

((
unH(j`)

n
t

)4
)
→ 0.

Since ln →∞ and cn → c as n→∞, the first convergence above follows from the triv-
ial convergence that E′

(
H(j1)ntH(j2)nt /(ln∆n)

)
→ r(j1)tr(j2)t

3
. The second convergence

can be obtained from the estimate that
(

1
ln
√
ln∆n

)4∑
i(nt+ln−i)4E′(U4

i )∆2
n ≤ Kl−1

n → 0,
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which follows from the i.i.d. property of {Ui}i, and the fact
∑

i(nt + ln − i)4 ≤ K(l5n).

Now let Ĥ(j)nt := 1
ln

∑
i∈Int

(nt + ln− i)
√

∆nÛ
n
i r(j)t, where Ûn

i :=
√

αt∆(n,i)
∆n

Ui. Apply
the arguments and estimates right before (B.97) in Li and Linton (2024), we have

Ẽ
(
u2
n(Ĥ(j)nt −H(j)nt )2

)
≤ Ku2

nln∆n(∆1+(η∧η′)
n ∨ ln∆n)→ 0,

thus un(Ĥ(j)nt − H(j)nt )
P−→ 0, which implies the convergence unĤn

t
L−→ H̃t, where

Ĥn
t :=

(
Ĥ(j1)nt , Ĥ(j2)nt

)
.

Next, using the convergence in law of unĤn
t to H̃t, we demonstrate that unH̃n

t con-
verges stably in law to H̃t. This amounts to showing that for any bounded random
variable V defined on (Ω,F ,P) and any bounded, continuous function f : R2 7→ R,

unE
(
V f(H̃n

t )
)
→ Ẽ

(
V f(H̃t)

)
= E(V )E′

(
f(H̃t)

)
. (SB.10)

Let Ht := σ(Ws : s ≥ t). Then, H̃n
t becomes Ht measurable; moreover, we can always

assume that V isHt measurable—otherwise, we can replace it by E (V |Ht). Let Bt,k =

(t, t + 1
k
], W (k)t,s :=

∫ s
t

1{Bc
t,k}(u)dWu, and we define a sequence of σ-fields Ht,k :=

σ(W (k)t,s : s ≥ 0). Note that
∨
kHt,k = Ht. Thus, we can replace V by Vk := E (V |Ht,k)

in (SB.10) since Vk → V in L1 given that V is bounded and Ht-measurable. Now
we take n large enough so that ln∆n <

1
k
, then H̃n

t is independent of the σ-field Ht,k.
Therefore, successive conditioning yields the first equality in the following chain of
equalities:

unE
(
V f(H̃n

t )
)

= unE(V )E′
(
f(H̃n

t )
)

= unE(V )E′
(
f(Ĥn

t )
)
→ E(V )E′(f(Ht)),

where the second equality follows from the scaling and symmetric properties of the
Wiener process that yield distributional equivalence, and the last convergence is im-
plied by the convergence in law of unĤn

t to H̃t. This proves (SB.10) hence the stable
convergence of unH̃n

t to H̃t. Then, apply Theorem 2.10 and Proposition 3.3 in Dahlhaus
et al. (2019), we have unG̃n

t converge in distribution to G̃t as l3/2n ∆n → 0. The F (0)-
stable convergence of unG̃n

t to G̃t follows immediately from the independence of F (0)

and G. The joint convergence can be proved using the same arguments to prove The-
orem A.4 of Jacod et al. (2017). Now the proof is complete.

Lemma SB.5. Let Assumption (S-HONL) hold, and further assume (kn ∨ ln)∆n → 0. Then,
we have

E
(
|Γ(j)nt − Γ(j)nt |

)
≤ Kl−1/2

n kn∆1/2
n ,
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where Γ(j)nt := 1
ln

∑
i∈I(j)nt

(γni )2f(χn, j)ni .

Proof of Lemma SB.5. For any nonnegative integer p, we have the following decompo-
sition (recall kp,n = kn + p): f(Y, j; kp,n)ni − (γni )2f(χn, j; kp,n)ni =

∑9
`=1 D(`)ni , where

D(1)ni := f(X, j; kp,n)ni , D(2)ni := γni+jf(X,χn, j; kp,n)ni , D(3)ni := χni+j+kp,nf(X, γ, j; kp,n)ni ,

D(4)ni := γni f(χn, X, j; kp,n)ni , D(5)ni := γni (γni+j − γni )f(χn, j; kp,n)ni ,

D(6)ni := γni χ
n
i+j+kp,nf(χn, γ, j; kp,n)ni , D(7)ni := χni−kp,nf(γ,X, j; kp,n)ni ,

D(8)ni := γni+jχ
n
i−kp,nf(γ, χn, j; kp,n)ni , D(9)ni := χni−kp,nχ

n
i+j+kp,nf(γ, j; kp,n)ni .

Define the filtration Hn
i := Fni−kp,n ⊗ G, thus D(`)ni is always Hn

i+2kp,n
measurable. By

successive conditioning, applying (A.6) and (A.7) from Jacod et al. (2017), and consid-
ering the boundedness of the fourth moments of χn, we have

E(|E(D(`)ni |Hn
i )|) ≤


Kk

3/2
p,n∆

3/2
n , if ` = 1, 3, 7, 9;

Kkp,n∆n, if ` = 2, 4, 6, 8;

Kj∆n, if ` = 5;

and

E
(
|D(`)ni |2

)
≤


Kk2

p,n∆2
n, if ` = 1, 3, 7, 9;

Kkp,n∆n, if ` = 2, 4, 6, 8;

Kj∆n. if ` = 5.

Then, Lemma A.6 in Jacod et al. (2017) yields

E
(
|l−1
n

∑
i∈I(j)nt

D(`)ni |
)
≤


Kl
−1/2
n k

3/2
p,n∆n(l

1/2
n ∆

1/2
n ∨ 1), if ` = 1, 3, 7, 9;

Kl
−1/2
n kp,n∆

1/2
n (l

1/2
n ∆

1/2
n ∨ 1), if ` = 2, 4, 6, 8;

Kl
−1/2
n k

1/2
p,n∆

1/2
n (l

1/2
n ∆

1/2
n k

−1/2
p,n ∨ 1), if ` = 5.

The result now readily follows since (kn ∨ ln)∆n → 0.

Lemma SB.6. Let Assumption (S-HONL) hold, and v > 1. We have

E
(

(Γ̃(j)nt − Γ(j)nt )2
)
≤ K

(
1

pnln

∨
k−vn

∨
kn∆n

)
, (SB.11)

where Γ̃(j)nt := 1
ln

∑
i∈I(j)nt

(γni )2χni χ
n
i+j.

Proof of Lemma SB.6. We first decompose f(χn, j)ni − χni χni+j = E(1)ni + E(2)ni + E(3)ni ,

9



where E(1)ni := −χni χni+j+kn , E(2)ni := −χni+jχni−kn , E(3)ni := 1
pn

∑pn−1
p=0 χni−kp,nχ

n
i+j+kp,n

,

with χni+j+kn := 1
pn

∑pn−1
p=0 χni+j+kp,n , χ

n
i−kn := 1

pn

∑pn−1
p=0 χni−kp,n . Then, by Hölder’s in-

equality, we have

E
(
|Γ̃(j)nt − Γ(j)nt |2

)
≤ K

3∑
`=1

E
(∑

i∈I(j)nt
(γni )2E(`)ni /ln

)2

.

By the boundedness of γ, it suffices to show that E
(∑

i∈I(j)nt
E(`)ni /ln

)2

has the same
bound as in (SB.11) for ` = 1, 2, 3. Next, by a direct application of Lemma SB.1, we

have for 1 ≤ k ≤ kn,
∣∣∣E(E(1)ni E(1)ni+k

)
− r(k)tn

i

pn

∣∣∣ ≤ K(k−vn ∨ kn∆n); and for k > kn,

we have an upper bound for
∣∣E(E(1)ni E(1)ni+k

)∣∣ ≤ K(k−vn ∨ kn∆n), which follows from
the separating techniques used in the proof of Lemma S5 in Li and Linton (2022b) and

applying Lemma SB.1. The two estimates immediately lead to E
(∑

i∈I(j)nt
E(1)ni /ln

)2

≤

K
(

1
pnln

∨
k−vn

∨
kn∆n

)
. Similarly, we have the same bound for E

(∑
i∈I(j)nt

E(2)ni /ln

)2

.
Next, we consider the case where ` = 3. Let’s denote χ(j; p)ni := χni−kn−pχ

n
i+j+kn+p, and

m := |p− p′| for any 0 ≤ p, p′ ≤ pn. By Lemma SB.1, for k < kn, we have∣∣∣E(χ(j; p)ni χ(j; p′)ni+k
)
− r(|k −m|)tni−kn−p

· r(|k +m|)tni−kn−p

∣∣∣ ≤ K(k−vn ∨ kn∆n),

which implies∣∣∣∣∣E(E(3)ni E(3)ni+k
)
−
r(k)2

tni−kn−p

pn
− 2

p2
n

pn−1∑
m=1

(pn −m− 1)r(|k −m|)tni−kn−p
· r(|k +m|)tni−kn−p

∣∣∣∣∣
≤ K(k−vn ∨ kn∆n).

Since v > 1, we have the following bound∣∣∣∣∣r(k)2
tni−kn−p

pn
+

2

p2
n

pn−1∑
m=1

(pn −m− 1)r(|k −m|)tni−kn−p
· r(|k +m|)tni−kn−p

∣∣∣∣∣
≤ K

k−2v

pn
+K

k−v

pn

pn−1∑
m=1

|k −m|−v ≤ Kk−v/pn.

Therefore, we get
∣∣E(E(3)ni E(3)ni+k

)∣∣ ≤ K(k
−v

pn
∨k−vn ∨kn∆n) for any k ≤ kn−1. For k ≥

kn, using similar arguments in Lemma S6 of Li and Linton (2022b), we obtain an upper
bound for

∣∣E(χ(j; p)ni χ(j; p′)ni+k
)∣∣ ≤ K(k−vn ∨kn∆n), which leads to

∣∣E(E(3)ni E(3)ni+k
)∣∣ ≤

K(k−vn ∨ kn∆n). Now, we obtain two similar bounds as we have for
∣∣E(E(1)ni E(1)ni+k

)∣∣.
Hence, we can derive the same upper bound for E

(∑
i∈I(j)nt

E(3)ni /ln

)2

as in (SB.11).
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The proof is complete.

Lemma SB.7. Let ln∆n → 0 and (kn ∨ pn)/
√
ln → 0. We have

unE
(
|Γ̂(j)nt − Γ̃(j)nt |

)
→ 0.

Proof of Lemma SB.7. Let Γ̂(j)nt − Γ̃(j)nt =: F(1)nt + F(2)nt , where

F(1)nt :=
1

ln

∑
i∈I(j)nt

(
γni γ

n
i+j − (γni )2

)
χni χ

n
i+j, F(2)nt :=

1

ln

∑
i∈Int \I(j)nt

εni ε
n
i+j.

By (A.6) in Jacod et al. (2017), the independence of F (0) and G, we have E(|F(1)nt |) ≤
K
√

∆n. Then, since the fourth moment of χn is finite, we get E(|F(2)nt |) ≤ K(kn/ln).
Thus, we have unE

(
|Γ̂(j)nt − Γ̃(j)nt |

)
≤ Kun(∆

1/2
n ∨ kn

ln
)→ 0.

We now state some auxiliary lemmas used to prove the consistency of the asymp-
totic variance estimator. We define the following auxiliary quantities and filtration: for
q ∈ {1, . . . , qn}, letH(dn)nq := Fnnt+2qdn

⊗Gnt+(2q−1)dn , Inj,q := {nt+2qdn+kn, . . . , nt+(2q+

1)dn − kn − j}, Γ̃(j; dn)nt(q)nt := 1
dn

∑
i∈Inj,q

(γni )2χni χ
n
i+j and Θ̃(j; dn)nt(q)nt := Γ̃(j; dn)nt(q)nt −

Γ̃(j; dn)nt(q−1)nt
. In the subsequent proof, we use shorthand notations Γ̃(j)nq ≡ Γ̃(j; dn)nt(q)nt

and Θ̃(j)nq ≡ Θ̃(j; dn)nt(q)nt for brevity. We now introduce the ‘oracle’ estimator for the
asymptotic variance as σ̃2(j, j′)nt := dn

2qn

∑qn−1
q=1 Θ̃(j)nq Θ̃(j′)nq . The following lemma es-

tablishes the validity of this approximation.

Lemma SB.8. Let kn ∧ pn → ∞, and for any v > 2, dnkn∆n → 0, dnk−vn → 0 and
dnLn∆n → 0. We have

E
(∣∣σ2(j, j′)nt − σ̃2(j, j′)nt

∣∣)→ 0. (SB.12)

Proof of Lemma SB.8. Let G(j; 1)nq = Γ(j)nt(q)nt −Γ(j)nt(q)nt and G(j; 2)nq = Γ(j)nt(q)nt −Γ̃(j)nt(q)nt
where Γ(j)nt is defined in Lemma SB.5 (with bandwidth dn here). We make the follow-
ing decomposition

σ2(j, j′)nt =
dn
2qn

qn−1∑
q=1

(
2∑
`=1

(G(j; `)nq−G(j; 1)nq−`)+Θ̃(j)nq )(
2∑
`=1

(G(j′; `)nq−G(j′; 1)nq−`)+Θ̃(j′)nq ).

First, since we have E((G(j; 1)nq )2) ≤ K
∑9

`=1

∑9
`′=1 |E(D(`)niD(`′)ni )| and E((D(`)ni )2) ≤

Kkn∆n for any ` = 1, . . . , 9 and i ∈ Inj,q (see Lemma SB.5), we obtain that E
(
(G(j; 1)nq )2

)
≤

Kkn∆n. By the estimate above, Lemma SB.6, and the Cauchy-Schwarz inequality, for

11



q,m ∈ {1, . . . , qn}, we have

E
(∣∣G(j; 1)nqG(j′; 1)nm

∣∣) ≤ Kkn∆n, E
(∣∣G(j; 2)nqG(j′; 2)nm

∣∣) ≤ K

(
1

pndn

∨ 1

kvn

∨
kn∆n

)
,

and E
(∣∣G(j; 1)nqG(j′; 2)nm

∣∣) ≤ K(kn∆n)1/2
(
p
−1/2
n d

−1/2
n ∨ k−v/2n ∨ (kn∆n)1/2

)
. Next, ap-

ply the Cauchy-Schwarz inequality to the decomposition of (Θ̃(j)nq )2, we obtain if

dnLn∆n → 0, E
(

(Θ̃(j)nq )2
)
≤ Kd−1

n . Lastly, by the Cauchy-Schwarz inequality, we
have

E
(∣∣∣G(j; 1)nq Θ̃(j)nm

∣∣∣) ≤ K(kn∆n)1/2d−1/2
n ,

E
(∣∣∣G(j; 2)nq Θ̃(j)nm

∣∣∣) ≤ K
(
p−1/2
n d−1/2

n ∨ k−v/2n ∨ (kn∆n)1/2
)
d−1/2
n .

Therefore, (SB.12) readily follows given all the asymptotic conditions.

Then, we make the following decomposition

σ̃2(j, j′)nt =
dn
2qn

qn−1∑
q=1

(
Z(dn)nq + Z(dn)nq−1 + U(j)nqU(j′)nq +

6∑
l=1

ψn,lq

)
,

where

Z(j)nq := Γ̃(j)nq − γ2
t(q)nt

r(j)t, Z(dn)nq := Z(j)nqZ(j′)nq , U(j)nq :=
(
γ2
t(q)nt
− γ2

t(q−1)nt

)
r(j)t;

ψn,1q := −Z(j)nqZ(j′)nq−1, ψ
n,2
q := −Z(j)nq−1Z(j′)nq , ψ

n,3
q := Z(j)nqU(j′)nq ;

ψn,4q := −Z(j)nq−1U(j′)nq , ψ
n,5
q := Z(j′)nqU(j)nq , ψ

n,6
q := −Z(j′)nq−1U(j)nq .

After some tedious but elementary calculations, we can establish the following es-
timates that will be used in the proof for Theorem D.1:

E
(∣∣∣dnE(Z(dn)nq |H(dn)nq

)
− γ4

t(q)nt
s(j, j′)t(q)nt

∣∣∣) ≤ K
(
d2
n∆n ∨ d−1

n

)
, (SB.13)

dnE
(∣∣U(j)nqU(j′)nq

∣∣) ≤ KdnLn∆n. (SB.14)

E
(
(Z(dn)nq )2

)
≤ K(d−2

n ∨ dn∆n) (SB.15)

E
(∣∣E(ψn,lq |H(dn)nq

)∣∣) ≤ K(d−1/2−v
n ∨ d1/2

n ∆n), if l = 1, 2. (SB.16)

E
(∣∣E(ψn,lq |H(dn)nq

)∣∣) ≤ K∆1/2
n , if l = 3, 4, 5, 6. (SB.17)

E
(
(ψn,lq )2

)
≤ K(d−2

n ∨ dn∆n), if l = 1, 2. (SB.18)

E
(
(ψn,lq )2

)
≤ Kd1/2

n ∆1/2
n (d−1

n ∨ d1/2
n ∆1/2

n ), if l = 3, 4, 5, 6. (SB.19)
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SB.2 Proof of Main Theorems

Proof of Theorem 4.1. We have the decomposition that Γ̂(j)nt −Γ(j)t := G(j)nt +G′(j)nt +

G′′(j)nt , where G(j)nt and G′(j)nt are defined in (SB.1), and G′′(j)nt := H(j)nt + D(j)nt .
Cauchy-Schwarz inequality and the bounded fourth moment of χn yield an upper
bound for E(|G′(j)nt | ∨ |G′′(j)nt |) ≤ K

√
ln∆n. By (ii) of Theorem 2.7 (the local LLN) in

Dahlhaus et al. (2019), we have if ln∆n → 0, G(j)nt
P−→ 0. Thus, we have the conver-

gence Γ̂(j)nt
P−→ Γ(j)t. The convergences of Ŝ(m)nt and D̂OFI(m)nt readily follow.

Proof of Theorem 4.2. The results follows from Theorem SB.1 and the second and third
convergence in Lemma SB.3.

Proof of Corollary 4.1. Theorem 4.2 admits a natural extension to a multivariate version.
Define Γ̂(m)nt := (Γ̂(`)nt )m`=0 and Γ(m)t := (Γ(`)t)

m
`=0. Then we have

un(Γ̂(m)nt − Γ(m)t)
Ls−→ Zt,

where Zt is an (m+ 1)-dimensional centered Gaussian vector with (m+ 1)× (m+ 1)-
dimensional conditional covariance matrix Σt whose (i, j)-th entry is given by Σ(i, j)t =

σ2(i− 1, j − 1)t. Let g : Rm+1 → R with g(x0, . . . , xm) := 2
√∑

|j|≤m θ(j;m)xj . We have

that the the (i+ 1)-th entry of ∇g(Γ(m)t) is given by θ(i;m)√∑
|j|≤m θ(j;m)Γ(j)t

for i = 0, . . . ,m.

Note that we have DOFI(m)t :=
∑
|j|≤m θ(j;m)Γ(j)t

Γ(0)t
− 1 = 2

∑m
j=1 θ(m)j

Γ(j)t
Γ(0)t

. Define
g′ : Rm+1 → R by g′(x0, . . . , xm) := 2

∑m
j=1 θ(j;m)

xj
x0

, and let S′(i;m)t denote the
(i + 1)-th entry of ∇g′(Γ(m)t). We obtain that S′(0;m)t = − 2

Γ(0)2t

∑m
j=1 θ(j;m)Γ(j)t

and S′(j;m)t = 2θ(j;m)
Γ(0)t

for j = 1, . . . ,m. Now, the first and second part of Corollary
4.1 follow from applications of the Delta method to the function g and g′, respectively.
The proof is now complete.

Now, we make the following decomposition:

Z(j)nt := Γ̃(j)nt − Γ(j)t = G(j)nt +H(j)nt +D(j)nt +G′(j)nt +
3∑
`=1

R(j; `)nt , (SB.20)

where R(j; 1)nt := Γ(j)nt −Γ(j)nt , R(j; 2)nt := Γ(j)nt −Γ̃(j)nt , and R(j; 3)nt := Γ̃(j)nt −Γ̂(j)nt .

Proof of Theorem C.1. First, we show that

un

3∑
`=1

R(j; `)nt
P−→ 0 (SB.21)
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under Condition B.4. By Lemma SB.5, we have unE(|R(j; 1)nt |)→ 0 if (kn ∨ ln)∆n → 0

and unl
−1/2
n kn∆

1/2
n → 0. Next, by Lemma SB.6, if pn →∞, u2

nk
−v
n → 0, and u2

nkn∆n → 0,
we get u2

nE
(
(R(j; 2)nt )2)→ 0. Lastly, by Lemma SB.7, if ln∆n → 0 and kn/

√
ln → 0, we

have unE(|R(j; 3)nt |) → 0. (SB.21) is proved. Now, Theorem C.1 is a consequence of
Theorem SB.1, Lemma SB.3 and (SB.21). This concludes the proof.

Proof for Theorem D.1. In view of (SB.13) and (SB.14), under the conditions dnLn∆n → 0

and v > 2, it follows that, as n→∞, we have

1

qn

qn−1∑
q=1

E
(∣∣∣dnE(Z(dn)nq |H(dn)nq

)
− γ4

t(q)nt
s(j, j′)t(q)nt

∣∣∣) ≤ K
(
d2
n∆n ∨ d−1

n

)
→ 0,

1

qn

qn−1∑
q=1

E
(∣∣∣dnE(Z(dn)nq−1|H(dn)nq−1

)
− γ4

t(q−1)nt
s(j, j′)t(q)nt

∣∣∣) ≤ K
(
d2
n∆n ∨ d−1

n

)
→ 0,

dn
qn

qn−1∑
q=1

E
(∣∣U(j)nqU(j′)nq

∣∣) ≤ KdnLn∆n → 0.

Using the estimates above, Proposition 3.3 in Dahlhaus et al. (2019) and (B.80) in Li
and Linton (2024), we deduce that

dn
qn

qn−1∑
q=1

E
(
Z(dn)nq |H(dn)nq

) P−→ γ4
t s(j, j

′)t,
dn
qn

qn−1∑
q=1

E
(
Z(dn)nq−1|H(dn)nq−1

) P−→ γ4
t s(j, j

′)t

(SB.22)

dn
qn

qn−1∑
q=1

U(j)nqU(j′)nq
P−→ 0. (SB.23)

Let Ψ(1; dn)nq := Z(dn)nq − E
(
Z(dn)nq |H(dn)nq

)
, Ψ(2; dn)nq := ψn,1q + ψn,2q , and Ψ(3; dn)nq :=

ψn,3q + ψn,4q + ψn,5q + ψn,6q , which are H(dn)nq+1 measurable. First, by successive condi-
tioning, for all q ∈ {1, . . . , qn}, we have E(|E(Ψ(1; dn)nq |H(dn)nq )|) = 0. Next, by (SB.16)
and (SB.17), for q ∈ {1, . . . , qn}, we obtain E

(∣∣E(Ψ(2; dn)nq |H(dn)nq
)∣∣) ≤ K(d

−1/2−v
n +

d
1/2
n ∆n) and E

(∣∣E(Ψ(3; dn)nq |H(dn)nq
)∣∣) ≤ K∆

1/2
n . Then, by (SB.15), (SB.18), and (SB.19),

we have, E
(
(Ψ(1; dn)nq )2

)
+ E

(
(Ψ(2; dn)nq )2

)
≤ K(d−2

n ∨ dn∆n) and E
(
(Ψ(3; dn)nq )2

)
≤

Kd
1/2
n ∆

1/2
n (d−1

n ∨ d1/2
n ∆

1/2
n ). Thus, by Lemma A.6 in Jacod et al. (2017), we obtain

E
(∣∣∣∑qn−1

q=1 Ψ(1; dn)nq

∣∣∣) ≤ K
(
q

1
2
n d
− 1

2
n + q

1
2
n dn∆

1
2
n

)
, E
(∣∣∣∑qn−1

q=1 Ψ(2; dn)nq

∣∣∣) ≤ K(qnd
− 1

2
−v

n +

qnd
1
2
n∆n+q

1
2
n d
− 1

2
n +q

1
2
n dn∆

1
2
n ), and E

(∣∣∣∑qn−1
q=1 Ψ(3; dn)nq

∣∣∣) ≤ K
(
qn∆

1
2
n + q

1
2
n d

3
2
n∆n + q

3
4
n d

1
4
n∆

1
4
n

)
.
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The estimates above imply that, under Condition B.5, as n→∞, for ` = 1, 2, 3, we have

dn
qn

E

(∣∣∣∣∣
qn−1∑
q=1

Ψ(`; dn)nq

∣∣∣∣∣
)
→ 0. (SB.24)

Apply the same argument as above for Ψ(1; dn)nq−1, we get dn
qn
E(|∑qn−1

q=1 Ψ(1; dn)nq−1|)→
0. Now, in view of (SB.22), (SB.23), and (SB.24), we have σ̃2(j, j′)nt

P−→ γ4
t s(j, j

′)t. Fi-
nally, Theorem D.1 follows from (SB.12). The proof is now complete.

Proof for Theorem 4.3. We first show thatZ(j)nt
P−→ 0. By Lemma SB.5, if (kn∨ln)∆n → 0

and knl
−1/2
n ∆

1/2
n → 0, we have E(|R(j; 1)nt |)→ 0. Then, by Lemma SB.6, when kn, ln →

∞ and v > 1, we obtain E
(
(R(j; 2)nt )2) → 0. Lastly, by Lemma SB.7, if ln∆n → 0

and kn/ln → 0, we have E(|R(j; 3)nt |) → 0. Now, together with Theorem 4.1, the
first part of (12) is proved, and the second and third part of it immediately follow by
the Slutsky theorem. (13) is an immediate consequence of Theorem C.1, specialized
to the degenerate case with a regular observation scheme, combined with the proof
technique of Corollary 4.1 and Theorem D.1. The proof is now complete.
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Figure SA.5: The solid blue lines plot the mean across 1,000 replications of the spot estimators S(m)nt
(11) for m ∈ {1, 3, 5}. Blue shading denotes the corresponding 95% simulated confidence intervals.
Red stars mark the true liquidity values S(m)t defined in (4). Pink dashed lines report the means of
the infeasible sample-analogue estimates Ŝ(m)nt defined in (9). We consider order flows χ follows a

tvAR(1) model defined by χni = ρiχ
n
i−1 +

√
1− ρ2i ei with {ei}i i.i.d.∼ N (0, 1) and the autoregressive

coefficient ρi = 0.35 + 0.15 cos(2πtni ). We further let γ′t = 1 + 0.05 cos(2πt). We set the scale of the noise
as Kγ = 5× 10−4. We let ln = 3000 for all estimations, and adopt the data-driven selection method for
kn,p as shown in Algorithm 2.
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