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Abstract

This note serves as the online supplementary material for Li and Yang (2025). Section
S.1 presents additional simulation results. Section S.2 presents and proves several lemmas,
which will be used to prove the main results in Li and Yang (2025).

S.1 Additional Simulation Results

S.1.1 Endogenous deviations

This section presents additional simulation results under the same conditions as Section 5 in
Li and Yang (2025), with the explicit inclusion of cross-covariance between the deviations
and the efficient price. The cross-covariance is modeled as a correlation between the
deviation’s innovation and the Brownian increments at a displacement of 1, denoted by
ν := corr(dWi+1, ei). We evaluate two levels of correlation strength: ν = 0.3 and ν = 0.6.
Results for negative ν are omitted, as the rejection rates for our left-sided tests are nearly
always 100%.

Table S.1 reports the results. The top panel displays results for ν = 0.3, and the bottom
for ν = 0.6. Consistent with our analysis in Section 4.4 of Li and Yang (2025), positive cross-
covariance reduces the rejection rates for left-sided tests, with more pronounced reductions
for larger cross-covariance values. For a fixed ν, the power reduction is more significant for
smaller errors. Nonetheless, left-sided tests remain effective for large errors, even with positive
cross-covariance.

When positive cross-covariance at displacement 1 is present, our right-sided test with a
single horizon K0 = {1} is expected to effectively detect the error terms. Table S.1 confirms
this, showing that the right-sided test using returns over a single horizon (denoted as K+

0 )
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achieves exceptionally high rejection rates across nearly all models. However, caution is
warranted: part of this strong performance stems from the numerical specification of the cross-
covariance at displacement 1. In practice, such prior knowledge about the cross-covariance
structure is rarely available. Under these circumstances, two-sided tests offer a more robust
and reliable alternative.

The power gains of two-sided tests—denoted as |Kℓ|—are particularly significant when
using a single horizon with ℓ = 0, and this aligns with our earlier analysis. Compared to
left-sided tests, two-sided tests with ℓ = 1, 2 exhibit pronounced power gains across several
models. Moreover, these gains grow as cross-covariance values increase.

This numerical study shows that the presence of cross-covariance between the deviations
and the efficient price can reduce the power of our tests. However, a quick remedy is to use
the two-sided tests, or a right-sided test if one has prior knowledge of the cross-covariance
structure. These tests are quite robust to the presence of cross-covariance and maintain higher
rejection rates even when such dependencies exist.

S.1.2 Other alternatives

We conduct simulation studies to evaluate our tests against various alternative models beyond
the conventional signal-plus-noise frameworks discussed in the main text Li and Yang (2025).
Although these alternative models are not the primary focus of this paper or the mainstream
literature, we believe that the findings warrant a brief discussion to illustrate the usefulness
and robustness of our method.

We evaluate three classes of alternative models: fractional Brownian motions with varying
Hurst parameters, purely stationary ARMA processes, and drift bursts discussed in recent
literature (Christensen et al., 2014; Andersen et al., 2023; Laurent et al., 2024). While the
models under each alternative hypothesis can be identified using either left or right-sided tests
with greater power, such testing strategies necessitate prior parametric knowledge, which is
unrealistic in practice. Therefore, we advocate for the two-sided test outlined in Section 4.5 of
Li and Yang (2025) to achieve robustness against a broader class of alternative models.

Table S.2 reports the rejection rates under various alternative models of market inefficiency.
As expected, the fractional Brownian motion (fBm) with Hurst parameter H = 0.55, which
is close to standard Brownian motion (H = 0.5), is difficult to detect, as evidenced by the
relatively low rejection rate of approximately 16% across all test statistics.

In contrast, the stationary alternatives—represented by AR(1), MA(1), and ARMA(1,1)
processes—are more readily detected, particularly when employing multi-horizon tests.
The performance improves notably from |K0| to |K1| and further to |K2|, suggesting that
incorporating multiple time horizons enhances the power of the tests against persistent but
stationary deviations from efficiency.

For the drift burst process, we observe strong detection power even in the case of mild
explosiveness, specifically when α = 0.55. Notably, the multi-horizon test statistic |K2|
achieves a rejection rate of nearly 89%, indicating its sensitivity to subtle departures from
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efficiency induced by locally explosive trends. As α increases, reflecting stronger drift bursts,
the power rapidly approaches 100%, demonstrating the effectiveness of our testing procedure
in identifying increasingly pronounced inefficiencies.

The robustness of these results is supported by the consistent pattern across different
alternative models. For instance, the superior performance of |K2| is not limited to one specific
data-generating process but holds across both stationary linear models and path-dependent
drift burst dynamics. Moreover, the use of two-sided tests ensures that deviations from the null
hypothesis are captured regardless of their directional bias, further reinforcing the reliability
of our inference framework.

Statistics
Model fBm fBm fBm AR(1) MA(1) ARMA(1,1) Drift burst

H=0.2 0.55 0.8 ϱ1 = 0.7 ϑ1 = 0.7 (0.7, 0.2) α = 0.55 0.65 0.75
|K0| 100.0 15.9 100.0 58.9 1.4 2.6 4.3 24.3 82.8
|K1| 100.0 19.6 100.0 84.1 100.0 62.8 45.8 90.2 99.9
|K2| 100.0 18.9 100.0 88.9 100.0 91.0 88.9 100.0 100.0

Table S.2: Rejection rates of the null hypothesis of an efficient price process (H0) under alternative models of market
inefficiency, including fractional Brownian motion (fBm), stationary linear processes (AR(1), MA(1), ARMA(1,1)),
and the drift burst hypothesis. Results are reported at the 1% significance level. The statistics |Kℓ|, ℓ = 0, 1, 2
denote two-sided tests derived from the methodology in Section 4.5 of the main text Li and Yang (2025). For the
drift burst model, α ∈ (0.5, 1) governs the intensity of the locally explosive trend (higher α implies stronger drift
bursts), as defined in Christensen et al. (2022). Simulations use 1,000 replications. The parameter ϱ1 denotes the
autoregressive coefficient in AR(1), ϑ1 the moving average coefficient in MA(1), and (ϱ1, ϑ1) for ARMA(1,1). We
set the innovations in the ARMA processes to have unit variance.

S.2 Mathematical Proofs

In this section, we present and prove several technical lemmas required for the main results
in Li and Yang (2025). These results are derived under the general framework outlined in
Section 4 and the Appendix of Li and Yang (2025), where the efficient price and its various
components follow a semimartingale with a jump component, the observation scheme {Tn

i }i
is random, and the deviations exhibit stochastic scaling. In the sequel, we denote Fn

i := FTn
i

,
and V n

i := VTn
i

for any process V .
For clarity, equations, theorems, and other numbered items from the main text (Li and

Yang, 2025) keep their original Arabic numerals, such as (1), (2), and (3). In this supplement,
new equations, theorems, lemmas, and similar items are labeled with an “S.” prefix to
differentiate them from those in the main text. For example, new equations in the supplement
are labeled as (S.1), (S.2), and (S.3).

In the sequel, K will denote a constant that may change from line to line, or even within
one line; when it depends on some parameters par, we write it Kpar; but it never depends on n

or other indices such as i, j.
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S.2.1 Preliminaries and Notations

We will use several classic estimates for Itô semimartingales (Jacod et al., 2017). Let V be any
of the processes X, b, σ, α, 1/α, γ (or any power of them), we have for any two finite stopping
times S ≤ S′, and any w ≥ 2 the following

|E (VS′ − VS | FS)| ≤ KE
(
S′ − S

∣∣FS

)
, (S.1)

E
(
supS≤s≤S′ |Vs − VS |w

∣∣FS

)
≤ Kw

(
E
(
S′ − S

∣∣FS

)
+ E

(
(S′ − S)w

∣∣FS

))
. (S.2)

Under Assumption (H-X), we have the following decomposition Xt = X ′
t + Jt, where

X ′
t = X0 +

∫ t

0
bsds+

∫ t

0
σsdWs; Jt =

∫
[0,t]×R

δ(s, x)µ(ds, dx).

Let q ∈ [0, 1), and k be a positive integer. For any integers i ∈ N∗, let

m(k)qi := (2i− 1)k + qk; m(k)qi± := m(k)qi ± k; (S.3)

where qk := ⌊2qk⌋ and ⌊·⌋ is the floor function.
We introduce the following notations for any two processes V and U :

F (V,U ; k, q)nt :=

n(k)qt−1∑
j=0

f(V,U ; k)nqk+(2j+1)k, F (V,U ; k)nt :=

∫ 1

0
F (V,U ; k, q)nt dq.

where f(V,U ; k)ni := (V n
i −V n

i−k)(U
n
i+k−Un

i ) for any processes V and U and a positive window
size k, and n(k)qt := ⌊(nt − qk)/(2k)⌋. When V = U , the notation f(V,U ; k)ni is identical to
f(V ; k)ni in Section 3 of Li and Yang (2025).

Note that F (V,U ; k, q)nt is the sum of the products of the increments of V and U over non-
overlapping blocks of size 2k, with initial points determined by q (or qk), and n(k)qt is the number
of such blocks. The integral F (V,U ; k)nt is the average of F (V,U ; k, q)nt over q ∈ [0, 1), or
equivalently, qk from 0 to 2k − 1. Thus, one can also write

F (V,U ; k)nt =
1

2k

nt−k∑
i=k

f(V,U ; k)ni .

When V = U , we write F (V ; k)nt and F (V ; k, q)nt for brevity.
By a classic localization procedure, we can replace the three assumptions (H-X), (O-ρ)

and (N-θ-v) by the following stronger one:

Assumption (S-HON). Assume Assumptions (H-X), (O-ρ) (with τ1 = ∞) and (N-θ-v) hold.
Assumption (H) hold for b, σ, α, γ. The function δ and the processes b, σ, α, 1/α, γ,X are bounded,

5



and there exists a nonnegative function Γ on R, satisfying

|δ(ω, t, x)| ≤ Γ(x),

∫
R
(Γ(x) ∧ 1)λ(dx) < ∞, nt ≤ Kt∆−1

n ;∣∣E (
∆(n, i)−∆n/α

n
i−1

∣∣Fn
i−1

)∣∣ ≤ K∆1+ρ
n , E

(
∆(n, i)κ| Fn

i−1

)
≤ K∆κ

n, κ ≥ 2.

(S.4)

S.2.2 Technical Lemmas

We first present a useful lemma concerning the random observation schemes {Tn
i }i. For

detailed assumptions and descriptions of this scheme, see Section 4 and Appendix A.2 in Li
and Yang (2025).

Lemma S.1. For any j′ > j ≥ 1, κ ≥ 2,

E
(
Tn
j′ − Tn

j

∣∣Fn
j

)
≤ K (j′ − j)∆n, E

(
(Tn

j′ − Tn
j )

κ
∣∣Fn

j

)
≤ K((j′ − j)∆n)

κ; (S.5)∣∣E (
Tn
j′ − Tn

j − (j′ − j)∆n/α
n
j

∣∣Fn
j

)∣∣ ≤ K(j′ − j)∆n (∆
ρ
n ∨ (j′ − j)∆n) ; (S.6)

E
((

Tn
j′ − Tn

j − (j′ − j)∆n/α
n
j

)2∣∣∣Fn
j

)
≤ K ((j′ − j)∆n)

2 (
∆ρ

n ∨ (j′ − j)−1 ∨ (j′ − j)∆n

)
. (S.7)

Proof. (S.5) follows directly from (S.4), the boundedness of 1/α, and Hölder’s inequality. Now
let dnk := ∆(n, k)− ∆n

αn
k−1

. Note that

Tn
j′ − Tn

j − (j′ − j)∆n/α
n
j =: A(1)nj,j′ + A(2)nj,j′ ,

where A(1)nj,j′ := ∆n
∑j′

k=j+1

(
1

αn
k−1

− 1
αn
j

)
,A(2)nj,j′ :=

∑j′

k=j+1 d
n
k . (S.4) and (S.1) imply∣∣∣E(

A(1)nj,j′

∣∣∣Fn
j

)∣∣∣ ≤ K(∆n(j
′ − j))2; (S.4) also implies

∣∣∣E(
A(2)nj,j′

∣∣∣Fn
j

)∣∣∣ ≤ K∆1+ρ
n (j′ − j),

and this proves (S.6).
Apply (S.2) (for 1/α) and (S.5), we have

E
(
(A(1)nj,j′)

2
∣∣Fn

j

)
≤ K(j′ − j)∆2

n

j′∑
k=j+1

E
(( 1

αn
k−1

− 1

αn
j

)2 ∣∣∣Fn
j

)
≤ K((j′ − j)∆n)

3.

By applying (S.4), successive conditioning, and Cauchy-Schwarz inequality, we have

E
(
(A(2)nj,j′)

2
∣∣Fn

j

)
≤ K

(
∆2

n(j
′ − j) +

∑
k,k′:k′>k

E
(
|dnk |

∣∣E (
dnk′ | Fn

k′−1

)∣∣∣∣Fn
j

))
≤ K((j′ − j)∆n)

2(∆ρ
n ∨ (j′ − j)−1).

This completes the proof of (S.7).

Lemma S.2. Let S, S′ be two finite stopping times, and let V be a local martingale. US′ is a
bounded variable that is measurable with respect to FS′ . Then, we have

|E (US′(VS′ − VS)| FS′∧S)| ≤ K
∣∣E (

S′ − S
∣∣FS′∧S

)∣∣ .
Proof. (i) Assume S′ ≤ S, then the result follows immediately from (S.1) and the fact that U is
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bounded. (ii) Now assume S′ > S, we define a (bounded) martingale Mt := E (US′ | Ft). Thus,
we have MS′ = US′ . By the analysis in (i), we have

|E (MS(VS′ − VS)| FS′∧S)| ≤ KE
(
S′ − S

∣∣FS

)
. (S.8)

Next, by the representation theorems for martingale, see, e.g., Theorem III 4.34 of Jacod
and Shiryaev (2003), both M and V have bounded quadratic variation whence bounded co-
variation as well. It is easy to see that

|E ((MS′ −MS)(VS′ − VS)| FS′∧S)| ≤ K
∣∣∣E(∫ S′

S
d[V,M ]s

∣∣∣FS

)∣∣∣ ≤ KE
(
S′ − S

∣∣FS

)
,

which, when combined with the earlier result in (S.8), completes the proof.

Recall X ′ below is the continuous part of the efficient price X .

Lemma S.3. Let k be a positive integer. For any i ≥ k, we have

∣∣E (
f(X ′; k)ni

∣∣Fn
i−k

)∣∣ ≤ K(k∆n)
2; (S.9)∣∣∣E((

f(X ′; k)ni /k∆n

)2∣∣∣Fn
i−k

)
− (σn

i−k)
4/(αn

i−k)
2
∣∣∣ ≤ K(k∆n ∨∆ρ

n); (S.10)∣∣E (
f(X ′; k)ni f(X

′; k)ni+k

∣∣Fn
i−k

)∣∣ ≤ K(k∆n)
3. (S.11)

Proof of (S.9). First of all, we rewrite E
(
X ′n

i+k −X ′n
i | Fn

i

)
as

bni
αn
i

k∆n + bni E
(
Tn
i+k − Tn

i − k∆n

αn
i

∣∣∣Fn
i

)
+ E

(∫ Tn
i+k

Tn
i

(bs − bni )ds
∣∣∣Fn

i

)
.

Recall that b/α is a bounded stochastic process, we have, by Lemma S.1 and Lemma S.2 that∣∣∣E((X ′n
i −X ′n

i−k)b
n
i /α

n
i | Fn

i−k

)∣∣∣ ≤ Kk∆n. Now we have by the boundedness of b, (S.6) and
Lemma S.2 that∣∣∣∣E(bni E(Tn

i+k − Tn
i

k∆n
− 1

αn
i

| Fn
i

)
(X ′n

i −X ′n
i−k) | Fn

i−k

)∣∣∣∣ ≤ K(k∆n)(k∆n ∨∆ρ
n).

Finally, by first conditioning on
∨i+k

j=i σ(∆(n, j))
∨Fn

i and then applying (S.1) (for b), we have∣∣∣E( ∫ Tn
i+k

Tn
i

(bs − bni )ds | Fn
i

)∣∣∣ ≤ K(k∆n)
2, which yields the following after another application

of Lemma S.2 : ∣∣∣∣E[E(∫ Tn
i+k

Tn
i

(bs − bni )ds
∣∣∣Fn

i

)
(X ′n

i −X ′n
i−k)

∣∣∣Fn
i−k

]∣∣∣∣ ≤ K(k∆n)
3.

Hence, the conclusion readily follows.
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Proof of (S.10). Denote

B(1)ni : =

∫ Tn
i

Tn
i−k

bsds, C(1)ni : =

∫ Tn
i

Tn
i−k

σ2
sds, D(1)ni : =

∫ Tn
i

Tn
i−k

σsdWs,

B(2)ni : =

∫ Tn
i+k

Tn
i

bsds, C(2)ni : =

∫ Tn
i+k

Tn
i

σ2
sds, D(2)ni : =

∫ Tn
i+k

Tn
i

σsdWs.

Thus, we have (f(X ′; k)ni )
2 = (B(1)ni +D(1)ni )

2(B(2)ni +D(2)ni )
2. An immediate observation

is that that the leading term in E
(
(f(X ′; k)ni )

2
∣∣Fn

i−k

)
is given by E

(
(D(1)ni )

2(D(2)ni )
2
∣∣Fn

i−k

)
,

which is equal to E
(
C(1)ni C(2)

n
i | Fn

i−k

)
by successive conditioning and Itô ’s isometry.

Rewrite C(1)ni = C (1)ni + D(1)ni , C(2)
n
i = C (2)ni + D(2)ni , where

C (1)ni : =

∫ Tn
i

Tn
i−k

(σ2
s − (σn

i−k)
2)ds, D(1)ni := (σn

i−k)
2(Tn

i − Tn
i−k),

C (2)ni : =

∫ Tn
i+k

Tn
i

(σ2
s − (σn

i )
2)ds, D(2)ni := (σn

i )
2(Tn

i+k − Tn
i ).

Cauchy-Schwarz inequality and the estimate (S.2) (for σ) yield

E(|C (1)ni | | Fn
i−k) ∨ E(|C (2)ni | | Fn

i ) ≤ K(k∆n)
3/2.

Thus, the leading term in E
(
C(1)ni C(2)

n
i | Fn

i−k

)
is E

(
D(1)ni D(2)ni | Fn

i−k

)
. Now apply (S.6), we

have ∣∣∣∣∣E
(

D(1)ni D(2)ni
(k∆n)2

∣∣∣∣Fn
i−k

)
− (σn

i−k)
2

αn
i−k

(σn
i )

2

αn
i

∣∣∣∣∣ ≤ K(k∆n ∨∆ρ
n).

By (S.1), we have

∣∣E (
(σn

i−k)
2/αn

i−k

(
(σn

i )
2/αn

i − (σn
i−k)

2/αn
i−k

)∣∣Fn
i−k

)∣∣ ≤ K∆n.

Now the proof is complete.

Proof of (S.11). Now let Cn
i := 1

(k∆n)2
E
(
(X ′n

i − X ′n
i+k)

2(X ′n
i+2k − X ′n

i+k) | Fn
i

)
. By successive

conditioning and (S.1) and (S.2), we have the boundedness of Cn
i . Then Lemma S.1 and Lemma

S.2 imply that
∣∣E (

(X ′n
i −X ′n

i−k)C
n
i

∣∣Fn
i−k

)∣∣ ≤ K(k∆n)
3. This proves (S.11).

Lemma S.4. We have for θ ∈ [0, 1] and any positive integer k,

E
(∣∣F (Y ; k)nt − F ′(χ; k)nt

∣∣) ≤ K∆
1
2
∧θ

n , (S.12)

where F ′(χ; k)nt := 1
2k

∑nt−k
i=k (∆θ

nγ
n
i )

2f(χ; k)ni .
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Proof. We make the following decomposition

2k
(
F (Y ; k)nt − F ′(χ; k)nt

)
=

nt−k∑
i=k

8∑
ℓ=1

E(ℓ)ni , (S.13)

where

E(1)ni := f(X; k)ni , E(2)ni := ∆2θ
n χi−kχi+kf(γ; k)

n
i , E(3)ni := ∆θ

nχi+kf(X, γ; k)ni ,

E(4)ni := ∆θ
nχi−kf(γ,X; k)ni , E(5)ni := ∆θ

nγ
n
i f(χ,X; k)ni , E(6)ni := ∆θ

nγ
n
i f(X,χ; k)ni ,

E(7)ni := ∆2θ
n γn

i χi+kf(χ, γ; k)
n
i , E(8)ni := ∆2θ

n γn
i χi−kf(γ, χ; k)

n
i .

It’s trivial to show that

E
(
(E(ℓ)ni )

2
)
≤

K∆2+4θ
n ℓ = 2;

K∆2+2θ
n ℓ = 3, 4.

Whence, by Cauchy-Schwarz inequality, we have

∑nt−k

i=k
E(|E(ℓ)ni |) ≤ K∆θ

n, ℓ = 2, 3, 4. (S.14)

Based on successive conditioning and the standard results provided in Chapter 2 of Jacod
and Protter (2011), it is not hard to show

E(|E (f(X; k)ni | Fn
i )|) + E

(
(f(X; k)ni )

2
)
≤ K∆2

n,

which in turn imply

E
(∣∣∣∣∑nt−k

i=k
E(1)ni

∣∣∣∣) ≤ K
√
∆n. (S.15)

Now let Hn
i := Fn

i−k ⊗ G. Then, we have

E(|E (f(X,χ)ni |Hn
i )|) ≤ KE

(∣∣E (
Xi −Xi−k| Fn

i−k

)∣∣) ≤ K∆n.

On the other hand, we also have E
(
(f(X,χ; k)ni )

2
)
≤ K∆n. Another application of Lemma

A.6 of Jacod et al. (2017) leads to

E
(∑nt−k

i=k
|f(X,χ; k)ni |

)
≤ K.

Similarly, we can prove E
(∑nt−k

i=k |f(χ,X; k)ni |
)
≤ K. Using the same technique, we can show

E
(∑nt−k

i=k
(|χi+kf(χ, γ; k)

n
i |+ |χi−kf(γ, χ; k)

n
i |)

)
≤ K.

9



By the boundedness of γ, we have

∑nt−k

i=k
E(|E(ℓ)|) ≤

K∆θ
n, ℓ = 5, 6;

K∆2θ
n , ℓ = 7, 8.

(S.16)

Now the result follows immediately from (S.13), (S.14), (S.15), and (S.16).

Lemma S.5. Let θ ∈
[
0, 34

)
. For any given positive integer k, we have

E
(∣∣∣∣2k∆1−2θ

n F (Y ; k)nt + g(k, r)

∫ t

0

γ2
sdAs

∣∣∣∣) ≤ K∆
1
2∧ v

1+v∧(1−θ)∧( 3
2−2θ)

n . (S.17)

Proof. We introduce the following decomposition

2∆nkF (Y ; k)nt + g(k; r)∆2θ
n

∫ t

0
γ2sdAs =

4∑
ℓ=1

D(ℓ)nt ,

with

D(1)nt := ∆n

∑nt−k

i=k
(∆θ

nγ
n
i )

2 (f(χ; k)ni + g(k; r)) ;

D(2)nt := g(k; r)
∑nt−k

i=k
(∆θ

nγ
n
i )

2 (αn
i ∆(n, i+ 1)−∆n) ;

D(3)nt := g(k; r)∆2θ
n

(∫ t

0
γ2sdAs −

∑nt−k

i=k
(γni )

2αn
i ∆(n, i+ 1)

)
;

D(4)nt := 2∆nk
(
F (Y ; k)nt − F ′(χ; k)nt

)
.

Let kn ≥ 2k, and define

H̃n
i := Fn

i−k ⊗ Gi−kn , δni := (γni )
2 (f(χ; k)ni + g(k; r)) .

Thus, δni is H̃n
i+k+kn

- measurable. We have

E
(∣∣∣E(

δni | H̃n
i

)∣∣∣) ≤ Kk−v
n , E

(
(δni )

2
)
≤ K.

Lemma A.6 in Jacod et al. (2017) yields E(|D(1)nt |) ≤ K∆2θ
n

(
k−v
n ∨

√
∆nkn

)
. Now let kn ≍

∆
−1/(1+v)
n , we have E(|D(1)nt |) ≤ K∆

2θ+ v
1+v

n . Next, by Lemma A.2 of Jacod et al. (2017), we

have E(|D(ℓ)nt |) ≤ K∆
1
2
+2θ

n for ℓ = 2, 3. Lemma S.4 implies E(|D(4)nt |) ≤ K∆
(1+θ)∧ 3

2
n . This

completes the proof.

Now we state and prove a key theorem.

Theorem S.6. Suppose that Assumption (S-HON) holds, we have the following functional
stable convergence in law:(

1√
∆n

F (X ′; k, q)nt

)
q∈[0,1)

Ls−→ (Zq
t )q∈[0,1),

10



where the limits are defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P). Conditional on F , each Zq
t

is Gaussian, and for any q, q′ ∈ [0, 1), we have

Ẽ
(
Zq
t Zq′

t | F
)
= Φq,q′

k

∫ t

0

σ4
s

α2
s

dAs,

where Ẽ is the expectation with respect to P̃ and Φq,q′

k :=
(k−|qk−q′k|)

2

2k .

Proof. (i) We first prove the convergence result for any q ∈ [0, 1). According to (S.9), and the
fact that n(k)qt ≤ Kt

∆nk
, we readily get that

1√
k∆n

n(k)qt∑
i=1

∣∣∣E(f(X ′; k)nm(k)qi
| Fn

m(k)qi−

)∣∣∣ ≤ K
√
k∆n.

According to (S.10) and Lemma A.11 of Jacod et al. (2019), we can derive that

1

k∆n

n(k)qt∑
i=1

E
(
f(X ′; k)2m(k)qi

| Fn
m(k)qi−

)
=

n(k)qt∑
i=1

(σn
m(k)qi

)4k∆n

(αn
m(k)qi

)2
+Op(k∆n ∨∆ρ

n)
P−→

∫ t

0

σ4
s

2α2
s

dAs.

Using (S.2), and by successive conditioning, we have

1

(k∆n)2

n(k)qt∑
i=1

E
(
f(X ′; k)4m(k)qi

| Fn
m(k)qi−

)
≤ Kk∆n −→ 0.

Now assume M is a bounded martingale that is orthogonal (in the martingale sense) to W .
Then, by the orthogonality and the martingale properties of W and M , it is easy to see that

1√
k∆n

n(k)qt∑
i=1

E
(
f(X ′; k)m(k)qi

(Mn
m(k)qi+

−Mn
m(k)qi−

) | Fn
m(k)qi−

) P−→ 0.

When M = W , one can use Lemma S.2 and the same techniques used in the proofs of the
previous lemmas to show that the LHS above converges to zero in probability. Now Theorem
2.2.15 in Jacod and Protter (2011) yields the following functional stable convergence in law:

1√
k∆n

F (X ′; k, q)nt
Ls−→

∫ t

0
βsdB

q
s ,

with βs := σ2
s√
2αs

for a Brownian motion Bq that is independent of F . It is obvious that the
role of q is trivial in this part. Hence, the same conclusion holds for q′. (ii) Now we turn to
the covariation/correlation between Bq and Bq′ here for q ̸= q′ (the case q = q′ reduces to
variance). According to (S.9), and upon successive conditioning, one can readily get that

1

k∆n

n(k)qt∑
i=1

n(k)q
′

t∑
j=1

|j−i|≥2

∣∣∣∣E(f(X ′; k)nm(k)qi
f(X ′; k)n

m(k)q
′

j

)∣∣∣∣ ≤ K

k∆n

n(k)qt∑
i=1

n(k)q
′

t∑
j=1

|j−i|≥2

(k∆n)
4 ≤ Kk∆n.
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Hence, we only need to consider the cases where i = j or |i− j| = 1.
Without loss of generality, assume q < q′. Let us examine the case where q′ − q < 1/2 first.

Consider the case j = i. For notation simplicity, let

t(0)ni = Tn
m(k)qi−

, t(1)ni = Tn

m(k)q
′

i−
, t(2)ni = Tn

m(k)qi
;

t(3)ni = Tn

m(k)q
′

i

, t(4)ni = Tn
m(k)qi+

, t(5)ni = Tn

m(k)q
′

i+

.

Obviously, we have t(0)ni < t(1)ni < t(2)ni < t(3)ni < t(4)ni < t(5)ni . Then we can rewrite

f(X ′; k)nm(k)
q
i
=

(
(X ′

t(2)ni
−X ′

t(1)ni
) + (X ′

t(1)ni
−X ′

t(0)ni
)
)(

(X ′
t(4)ni

−X ′
t(3)ni

) + (X ′
t(3)ni

−X ′
t(2)ni

)
)
;

f(X ′; k)n
m(k)

q′
i

=
(
(X ′

t(3)ni
−X ′

t(2)ni
) + (X ′

t(2)ni
−X ′

t(1)ni
)
)(

(X ′
t(5)ni

−X ′
t(4)ni

) + (X ′
t(4)ni

−X ′
t(3)ni

)
)
.

One observes that the only common term of f(X ′; k)n
m(k)qi

and f(X ′; k)n
m(k)q

′
i

after expansion

is (X ′
t(2)ni

−X ′
t(1)ni

)(X ′
t(4)ni

−X ′
t(3)ni

), as illustrated in Figure S.1. Upon using Lemma S.2 in the

t(0)ni t(2)ni
t(4)ni

t(1)ni t(3)ni t(5)ni

Figure S.1: Illustration of the case q < q′ < q + 1/2.

way we prove, e.g., (S.9), one can show that the following after some elementary calculations:∣∣∣E(f(X ′; k)nm(k)qi
f(X ′; k)n

m(k)q
′

i

− (X ′
t(2)ni

−X ′
t(1)ni

)2(X ′
t(3)ni

−X ′
t(4)ni

)2 | Ft(0)ni

)∣∣∣ ≤ K(k∆n)
3.

Similar to (S.10), one can prove that∣∣∣∣E[(X ′
t(2)ni

−X ′
t(1)ni√

k∆n

)2(X ′
t(3)ni

−X ′
t(4)ni√

k∆n

)2

−
σ4
t(0)ni

α2
t(0)ni

(
1− |qk − q′k′ |

k

) ∣∣∣Ft(0)ni

]∣∣∣∣ ≤ K(k∆n ∨∆ρ
n).

In the case |j − i| = 1, there are no common terms. Hence, the conditional expectation of
the product is of order Op(k∆n)

3. It then follows that, when q < q′ < q+1/2, the main term of
the covariance

1

k∆n

n(k)q
′

t∑
i=1

E
(
f(X ′; k)nm(k)qi

f(X ′; k)n
m(k)q

′
i

| Fn
m(k)qi

)

=
Φq,q′

k

k

n(k)q
′

t∑
i=1

(
2k∆n

σ4
t(0)ni

α2
t(0)ni

+ op(k∆n)
)

P−→ Φq,q′

k

k

∫ t

0

σ4
s

α2
s

dAs.

For the case q + 1/2 ≤ q′ < q + 1, there are no common terms when j = i. Instead, there is a
common term when j = i+ 1.

In this case, one can define t(6)ni := Tn
m(k)qi+1

and t(8)ni := Tn
m(k)q

(i+1)+
following the above

manner. This scenario is illustrated in Figure S.2. Note that there is no common term when
q′ = q + 1/2 (t(3)ni = t(4)ni and t(5)ni = t(6)ni ). Following a similar analysis as above, one can
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t(0)ni t(2)ni
t(4)ni t(6)ni

t(8)ni

t(1)ni t(3)ni t(5)ni

Figure S.2: Illustration of the case q + 1/2 ≤ q′ < q + 1

derive the same covariance. The uniform convergence in q is trivial, as there are only finite qk

and uniformity reduces to finite dimensional convergence. Now the proof is complete.

The next two lemmas will deal with the truncations used to remove jumps. For any process
V , we define the truncated process V n

t :=
∑nt

i=2(∆
n
i V )1{|∆n

i V |≤un}.

Lemma S.7. Under the assumptions of Theorem S.6, we have

1√
k∆n

n(k)qt∑
i=1

E
( ∣∣∣f(Xn

; k)nm(k)qi
− f(X ′; k)nm(k)qi

∣∣∣ ∣∣∣Fn
i−k

)
P−→ 0. (S.18)

Proof. For any j = 1, . . . , 2k, define

xj :=
∆n

m(k)qi−k+j
X

√
∆n

and x̃j := xj · 1{|xj |≤un∆
−1/2
n }.

Similarly, one can define x′j , x̃
′
j , x

′′
j , and x̃′′j by replacing X with X ′ or J accordingly. Note that

un∆
−1/2
n = a∆

ϖ−1/2
n diverges to infinity.

For any integer l, let An,l := {|∆n
l X

′| ≥ un}. The increment ∆n
l X

′ is dominated by the
Brownian motion part. Hence, the term ∆n

l X
′/
√
∆n is (approximately) normally distributed

conditional on Fn
l−1, which implies that the probability P(Ac

n,l) decays exponentially to zero.
Note that the impact of the assumed random sampling interval is negligible here. We can
obtain

∑nt
l=1 P(Ac

n,l) −→ 0, as n → 0,∀t ∈ (0,∞).

Following a similar argument as Jacod and Protter (2011), it suffices to prove the result on
the set ∩nt

l=1An,l, on which we always have x̃′j = x′j . We introduce a new function R2k 7→ R :

h(x1, . . . , x2k) = (x1 + · · ·+ xk)(xk+1 + · · ·+ x2k). On the refined set, we have

1

∆n

(
f(Xun ; k)

n
m(q)ni

− f(X ′; k)nm(q)ni

)
= h(x̃1, . . . , x̃2k)− h(x̃′1, . . . , x̃

′
2k)

=
2k∑
j=1

(
h(x̃1, . . . , x̃j−1, x̃j , x̃

′
j+1, . . . , x̃

′
2k)− h(x̃1, . . . , x̃j−1, x̃

′
j , x̃

′
j+1, . . . , x̃

′
2k)

)

=
2k∑

j=k+1

(x̃1 + · · ·+ x̃k)(x̃j − x̃′j) +
k∑

j=1

(x̃j − x̃′j)(x̃
′
k+1 + · · ·+ x̃′2k)

When |xj | ≤ un∆
−1/2
n , we have x̃j − x̃′j = x′′j , where |x′′j | ≤ 2un∆

−1/2
n . Otherwise, we get

x̃j − x̃′j = −x′j , where |x′j | ≤ un. It then follows that |x̃j − x̃′j | ≤ K|x̃′′j ∧ un∆
−1/2
n |. A careful

13



examine of the proof of Corollary 2.1.9 in Jacod and Protter (2011) indicates that our assumed
random observation scheme does not make a real difference. Whenever a is a constant or
measurable to Fn

m(k)qi−k+j−1
(e.g., the estimated spot volatility prior to Tn

j−1), part (c) of the
corollary implies that

E
(
|x̃′′j ∧ un∆

−1/2
n | | Fn

j−1

)
≤ Kun∆

−1/2
n ∆1−ϖ

n ϕn ≤ K∆1/2
n ϕn,

where ϕn → 0 as n → ∞. Even when a is not adaptive to Fn
m(k)qi−k+j−1

(e.g., average integrated
volatility multiplied by some constant), the above bound still holds as long as aj−1, aj , and
x̃′′j ∧ (aj − aj−1) are both Op(1), where aj = E(a|Fn

m(k)qi−k+j−1
). It then follows that the LHS of

(S.18) is bounded by 1√
k∆n

∑n(k)qt
i=1 Kk2∆

3/2
n ϕn ≤ K

√
kϕn → 0. This completes the proof.

Lemma S.8. Assume θ ∈ [0, 34), ϖ ∈ (0, 12). Then, we have for any positive integer k,

E
(
k∆1−2θ

n

∣∣F (Y ; k)nt − F (Y ; k)nt
∣∣) ≤ K∆

1
2
−ϖ

n ,

E
(
∆2−4θ

n |Q(Y )nt −Q(Y )nt |
)
≤ K∆

3
2
−ϖ

n ,

where Q(Y )nt is the Q statistic applied to the truncated returns.

Proof. Let unj := K
√

ĉnj∆
ϖ
n , where ĉnj is a noisy (hence biased) estimate of volatility. For

example, one can set ĉnj := 1
dn∆n

∑j
i=j−dn+1(∆

n
i Y )2 to be pre-estimator for some dn → ∞.

Alternatively, one can set it to be the average realized variance. Following a similar analysis as
in the proof of Lemma S.4, one can show that ĉnj = Op(∆

2θ−1
n ∨ 1). It is easy to see that

∣∣(∆n
j Y )1{|∆n

j Y |≤un
j }(∆

n
j′Y )1{{|∆n

j′Y |≤un
j′}}

− (∆n
j Y )(∆n

j′Y )
∣∣

≤
∣∣(∆n

j Y )(∆n
j′Y )

∣∣(1{|∆n
j Y |>un

j } + 1{|∆n
j′Y |>un

j′}
)
.

When θ ∈ (12 ,
3
4), the Brownian motion part dominates the weak noise in the return process.

The proof in this case basically follows the same idea as in the proof of Lemma S.7, hence is
omitted here. When θ ∈ [0, 12 ], we have the following estimates

P
(
|∆n

j Y | > unj
)
≤ E

(
(∆n

j Y )2/(unj )
2
)
≤ K∆1−2ϖ

n ; E
(
(∆n

j Y )2ι
)
≤ K∆2θι

n , ι = 1, 2. (S.19)

The above estimates and an application of Cauchy-Schwarz inequality yield

E
(∣∣(∆n

j Y )(∆n
j′Y )

∣∣ι(1{|∆n
j Y |>un

j } + 1{|∆n
j′Y |>un

j′}
))

≤ K∆
2ιθ+ 1

2
−ϖ

n .

The results now readily follow.

For any process V , we denote ∆n
i V := V n

i − V n
i−1.
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Lemma S.9. We have

1

∆n

nt−1∑
i=2

(∆n
i X

n
)2(∆n

i+1X
n
)2

P−→
∫ t

0

σ4
s

α2
s

dAs.

Proof. One can follow the same argument as in the proof of Lemma S.7, using another h

function defined as h(x1, x2) = x21x
2
2 to show that

1

∆n

nt−1∑
i=2

(
(∆n

i X
n
)2(∆n

i+1X
n
)2 − (∆n

i X
′)2(∆n

i+1X
′)2

) P−→ 0.

Therefore, it suffices to prove

1

∆n

nt−1∑
i=1

(∆n
i X

′)2(∆n
i+1X

′)2
P−→

∫ t

0

σ4
s

α2
s

dAs. (S.20)

Let S n
i = (∆n

i X
′)2(∆n

i+1X
′)2, and S

n
i = S n

i − E
(
S n

i | Fn
i−1

)
. An application of (S.10) (with

k = 1) yields ∣∣∣∣∣
nt−1∑
i=1

E
(
S n

i | Fn
i−1

)
∆n

−∆n

nt−1∑
i=1

(σn
i−1)

4

(αn
i−1)

2

∣∣∣∣∣ ≤ K∆1∧ρ
n .

(S.10) also implies that E
(
(S

n
i )

2
)
≤ K∆4

n. Therefore, we have

E
(
(
∑nt−1

i=1
S

n
i /∆n)

2
)
=

nt−1∑
i=1

E
(
(S

n
i )

2/∆2
n

)
≤ K∆n.

The above two estimates and Lemma A.11 of Jacod et al. (2019) lead to

∑nt−1

i=1
S n

i /∆n
P−→

∫ t

0

σ4
s

α2
s

dAs.

The proof is complete.

Lemma S.10. Given two positive integers k ≤ k′, let L = lcm(k, k′) be the least common
multiple of k and k′. For any positive integer l ∈ {1, . . . , L/k′}, and qk ∈ {0, 1, . . . , 2k−1}, q′k′ ∈
{0, 1, . . . , 2k′ − 1}, define

c(qk, q
′
k′)l := (m′

l ∧ml − (m′
l − k′) ∨ (ml − k))((m′

l + k′) ∧ (ml + k)−m′
l ∨ml),

where

m′
l := (2l − 1)k′ + q′k′ , ml :=

(
2
⌊m′

l − qk
2k

⌋
+ 1

)
k + qk.
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Then, we have

2k−1∑
qk=0

2k′−1∑
q′
k′=0

L/k′∑
l=1

c(qk, q
′
k′)l = 2LΦk,k′ , (S.21)

where Φk,k′ := k3 − 1
3

[
(2k − k′)3 − (2k − k′)

]
1{k′≤2k}.

Proof. For simplicity, we denote cl as a short form of c(qk, q′k′)l. We first define two remainders:

a ≡ k′ (mod 2k), b ≡ (2l − 1)a+ q′k − qk (mod 2k).

It is then trivial to obtain m′
l = Cl + b, ml = Cl + k, where

Cl := 2
⌊ k′

2k

⌋
(2l − 1)k + 2

⌊(2l − 1)a+ q′k′ − qk
2k

⌋
k + qk.

One observation is that cl remains unchanged when m′
l and ml change by the same amount, in

particular, Cl. Consequently, it follows that

cl = [b ∧ k − (b− k′) ∨ 0][(b+ k′) ∧ 2k − b ∨ k]. (S.22)

Another key observation here is that the remainder b will take on all values in 0, . . . , 2k − 1

when qk runs over the same set, regardless of the values of l and q′k′ . This implies that we can
first sum cl over qk and the result will be invariant to l and q′k′ .

When k′ ≥ 2k, it is easy to check that

cl = (b ∧ k)[k − (b− k) ∨ 0] = k[b ∧ (2k − b)].

Therefore, we obtain, by observing the dependence of cl on qk, that

Φk,k′ :=

2k−1∑
qk=0

cl =

2k−1∑
b=0

k[b ∧ (2k − b)] = k3.

When k ≤ k′ < 2k, there are four categories:

cl =



b(b+ k′ − k) if 0 ≤ b < 2k − k′;

bk if 2k − k′ ≤ b ≤ k;

(2k − b)k if k ≤ b ≤ k′;

(2k − b)(k′ + k − b) if k′ < b < 2k.

Note that we consider the case b = k in both the second and the third categories, for
convenience. Also note that the above four categories are symmetric around b = k (which
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is counted twice). Thus, we can get

Φk,k′ =

2k−1∑
qk=0

cl = 2
( 2k−k′−1∑

b=1

b(b+ k′ − k) +

k∑
b=2k−k′

bk
)
− k2

=
1

3
(2k − k′)(2k − k′ − 1)(k − k′ − 1) + k(3k − k′)(k′ − k + 1)− k2

=
1

3

(
3k3 + (k′ − 2k)3 − (k′ − 2k)

)
.

In particular, if we plug k′ = 2k into the last expression, we get Φk,2k = k3, which is the same
as the case k′ ≥ 2k. That said, the term Φk,2k is “continuous” at the point k′ = 2k. Hence, for
k′ ≥ k, we can write

Φk,k′ =
1

3

(
3k3 −

[
(2k − k′)3 − (2k − k′)

]
1{k′≤2k}

)
.

Then, the triple summation of cl is simply 2LΦk,k′ .

Theorem S.11. For any two integers k, k′, we have the jointly convergence in law(
F (X ′; k)nt√

∆n
,
F (X ′; k′)nt√

∆n

)
Ls−→ (Zt,Z ′

t),

where the limits are defined on an extension (Ω̃, F̃ , P̃) of (Ω,F ,P). Conditional on F , (Zt,Z ′
t)

are jointly Gaussian, with (co)-variances Ẽ
(
ZtZ ′

t | F
)
= Φk,k′

∫ t
0

σ4
s

α2
s
dAs.

Proof. We consider two distinct sampling mechanisms: one characterized by a window size
k beginning at qk = ⌊2qk⌋ for some q ∈ [0, 1), and the other by a window size k′ starting
at q′k′ = ⌊2q′k′⌋ for some q′ ∈ [0, 1). Assuming k ≤ k′ without loss of generality, we define
L = lcm(k, k′) to represent the least common multiple of the window sizes k and k′.

To determine the covariance between F (X ′; k, q)nt and F (X ′; k′, q′)nt , we can leverage the
two sampling schemes. It is evident that a repeating pattern emerges every 2L observations.
This pattern corresponds to L/k′ non-overlapping windows when using the (k′, q′)-scheme.
The covariance structure is determined by these intervals. For simplicity, we will focus our
analysis on the first interval that contains the first L observations, as the remaining intervals
follow the same analysis.

For l = 1, . . . , L, the middle point of the (k′, q′)-scheme is given by m′
l, defined in Lemma

S.10. When considering the local windows from the (k, q)-scheme, if the middle point of a
window is more than k observations away from m′

l, the contribution to the covariance from
these two windows will be asymptotically negligible. Therefore, we only need to focus on the
windows from the (k, q)-scheme whose middle point is within k observations from m′

l. The
middle point of such a window is given by ml, which is also defined in Lemma S.10.

In this case, there are only two possibilities: ml < m′
l and ml ≥ m′

l. Simple illustrations of
these possibilities are provided in Figure S.3. It is important to note that in the first possibility,
ml − k could be smaller than m′

l − k′, while in the second possibility, ml + k could be larger
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than m′
l + k′. This explains the two multiplicative factors of c(qk, q′k′)l defined in Lemma S.10,

which are represented by the shaded intervals in Figure S.3.

ml − k ml ml + k

m′
l − k′ m′

l m′
l + k′

m′
l − k′ m′

l m′
l + k′

ml − k ml ml + k

Figure S.3: Two cases illustrating the relationship between ml and m′
l when |ml −m′

l| ≤ k.

Following Lemma A.11 of Jacod et al. (2019), the F-conditional covariance of F (X ′; k, q)nt

and F (X ′; k′, q′)nt can be simplified as:

Cov
( 1√

k∆n
F (X ′; k, q)nt ,

1√
k′∆n

F (X ′; k′, q′)nt | F
)

=

⌊ nt
2L

⌋∑
v=1

σ4
Tn
2(v−1)L

2α2
Tn
2(v−1)L

L
k′∑
l=1

cl√
kk′

∆n + op(1) =

L
k′∑
l=1

cl√
kk′L

∫ t

0

σ4
s

2α2
s

dAs + op(1).

The bilinear property of the covariance implies that

Cov
( 1√

k∆n
F (X ′; k)nt ,

1√
k′∆n

F (X ′; k′)nt |F
)

=
1

2k

1

2k′

2k−1∑
qk=0

2k′−1∑
q′
k′=0

Cov
( 1√

k∆n
F (X ′; k, q)nt ,

1√
k′∆n

F (X ′; k′, q′)nt | F
)

=
1

4kk′

2k−1∑
qk=0

2k′−1∑
q′
k′=0

L/k′∑
l=1

cl√
kk′L

∫ t

0

σ4
s

2α2
s

dAs + op(1).

Thus, by Lemma S.10, we have

Cov

(
1√
∆n

F (X ′; k)nt ,
1√
∆n

F (X ′; k′)nt |F
)

P−→ Φk,k′

2kk′

∫ t

0

σ4
s

2α2
s

ds = Φk,k′

∫ t

0

σ4
s

α2
s

ds.

Now the convergence follows from Theorem S.6.
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Laurent, S., Renò, R., and Shi, S. (2024). Realized drift. Journal of Econometrics, page 105813.

Li, Z. M. and Yang, X. (2025). Multi-horizon test for market frictions. working paper.

19


	Additional Simulation Results
	Endogenous deviations
	Other alternatives

	Mathematical Proofs
	Preliminaries and Notations
	Technical Lemmas


